AERT—F77F 13012
(1998. 8. 5)

Register Spilling for Software Pipelining
| Huan Liuf Dingchao Li 1 Naohi;o Ishii {

tDepartment of Intelligence and Computer Science, Nagoya Institute of Technology
{Educational Center for information processing, Nagoya Institute of Technology
tE-mail: {hliu,ishii}@egg.ics.nitech.ac.jp
1E-mail: liding@center.nitech.ac.jp

Software Pipelining is technique for exploiting instruction level parallelism in a variety of loops. In
this paper, we improve the existing register-constrained software pipelining algorithm for efficiently
schdeuling a loop with recurrences. Our strategy is to avoid spilling lifetimes in recurrence paths dur-
ing the scheduling process. This enables software pipelining to reduce the register requirement without
increasing the initiation interval of the loop’s successive iterations.

Keywords: Fine grain parallel architectures, comipler optimization, software pipelining, modulo
scheduling, register spilling.

6'7

1 Introduction

Loops are the major source of parallelism in sci-

entific programs. To fully exploit instruction-level

parallelism, software pipelining has been proposed
as an efficient method for loop scheduling for high-
performance VLIW and super-scalar architectures.
Software pipelining derives a periodic pattern (or,
a schedule) that overlaps instructions from differ-
ent iterations of a loop body. The performance of
such a schedule is measured by the initiation in-
terval (II) of successive iterations. A smaller II
corresponds to a shorter execution time.

Today there are variety of algorithms for soft-
ware pipelining. An excellent survey of these al-
gorithms can be found in [2). However, many of
them implicitly assume unlimited number of regis-
ters. If the number of real registers is not sufficient,
there could be a problem since any valid schedule
must fit in the available number of registers of a
target machine. In this paper, we are interested in
finding software-pipelined schedules in the face of
a bounded number of registers. Our aim is to de-
velop an efficient approach that inserts spill code
during the software pipelining process to reduce
register pressure when required.

Due to some characteristics of software pipelin-
ing, traditional spilling techniques are difficult to
apply. Recently, the work by Llosa et al. [1] dis-
cussed how to add spill code for software pipelin-
ing. Their scheme selects a register to spill, based
on the consideration of the largest lifetime, or the
largest lifetime divided by the number of addi-
tional memory operations required. However, for
the loops with recurrences, such a spilling decision
may lengthen the initiation interval (II) of succes-
sive iterations. To solve this problem, the strategy
described in this paper attempts to avoid spilling
lifetimes in recurrence paths so that the II is not
increased.

The rest of this paper is organized as follows. In
Section 2, we establish machine and program mod-
els. In section 4, we review the existing register-
constrained software pipelining scheme. In section
5, we describe an improvement for the efficient
placement of spill code. In section 5, we report
its effects on register pressure.

2 Machine model and pro-
gram model

The target machine under consideration in this
paper is a heterogeneous non-pipelined processor
with different types of functional units, such as In-
teger, Floating Point (FP) Add, Load/Store, FP
Multiply, and so on. To simplify the discussion in
this paper, we consider that this machine has a sin-
gle set of identical general-purpose registers. That
is, it does not have different classes of registers:
integer registers, address registers, and floating-
point registers.

We also assume that a DAG is used to repre-
sent a loop iteration. In a DAG, vertece represent
the operations in a program. An arc from one op-
eration to another indicates that there is a data
dependence between them. We consider here two
types of data dependencies: loop-independent and
loop-carried. A loop-independent dependency is
between operations in the same iteration of a loop.
A loop-carried dependency exists between opera-
tions in successive loop iterations.

Figure 1 shows a loop iteration and its DAG, in
which loop-carried dependences are indicated by
arcs with positive numbers beside them indicating
their dependence.

loop body:
X[i) = Z[] » Y[i - 5] + Y[E] + Z[i - 3]

I1: load V2 YVI]
12: load V3 7[VI]
I3: malt VA V3V
14:0dd V5 V4 V2
I5:add V6 V5,V'3
I6: store X[V1] V6

(4aa)
A
(Smn)

Figure 1: A sample program and its DAG

3 Overview of Modulo

Scheduling

In a software pipelined loop, the schedule for an it-
eration is divided into stages so that the execution

—68—

of consecutive iterations that are in distinct stages
is overlapped. The number of cycles per stage is
the initiation interval(II).

The initiation interval IT between two succes-
sive iterations is bounded either by loop-carried
dependences in the DAG graph or by resource
constraints of the architecture. The lower bound
on the II is termed the Minimum Initiation
Interval(MII = max RecMII, ResMII)[2].

4 Existing Register-
Constrained Scheme

This section reviews the exsiting register spilling

algorithm proposed in [1]. The algorithm of [1]

employs the well-known modulo scheduling for im-
plementing software pipelining (see Figure 2).

=

Il++

Scheduling

[adaspir

Select Lifetimes _” Register Allocation J '

Figure 2: Flow diagram of alogrithm of {1]

When the number of real registers is not suffi-
cient during modulo scheduling, the algorithm of
(1] selects the lifetimes to spill usmg the following
two strategies

o Spill the longest lifetime regardless of the cost.
It’s called Maz(LT).

o Spill the largest Lifetime/Cost.

It’s called
Max(LT/Traf). :

5 The algorithm

Let us now consider the examle in Figure 1toil-
lustrate the problem of the algorithm in [1]. For

purpose of discussion in this section, we consider
an architecture with 2 Load/Store units, 2 ALU

units, and 1 Mult unit. Further let the execution
time of an Integer add/sub be 1 cycle, while that
of an FP multiply be 1 cycle. Assume also that
load/store takes 1 cycle and only 14 registers could
be available to execute the example program (Fig-
ure 1).

Now we do modulo scheduling and use the
alogrithm of [1] to reduce register pressure.

First, we calcuate the I7, RII is

RII maxc—
- r€R n,

Example program (Figure 1)’s RII is

3., .2, 1
RIT = max([3], 131, [71) =2
In the example program (Figure 1), IT = RIT = 2.

Then we schedule example program (Figure 1)
and allocate all operations to modulo resource ta-
ble. The result is shown in the table 1.

Kernel table a.fter scheduling has been shown in
table 2

The register reqirements could be calculated by
the following equation,

> RR= i RR
i=1
LTDist, _LTSch,

RR=—%7 73

Z RR=3(V1) +5(V2) + 4(v3) +1(V4)
+1(V5) + 1(V6) =15

RR is represented register requirement.

For the example program (Figure 1), 15 registers
would be needed by the regular scheduling. As we
assumed the target machine could apply only 14
registers to execute example program(Figure 1),
Lifetimes should be spilled out to reduce register
pressure. By the alogrithm of [1], the largest life-
time V2 should be spilled out.

. As the figure 3’s show, value V2 has been
spilled *out. = Operation Load and Mult should
be scheduled simultanously as “complex opera-
tion” (see [1]). However, there isn’t empty memory
unit in table 2’s first cycle. II should be increased
if add spill code to value V2. The kernel table after
adding spill code is shown in table 3.

In spite that the sum of register requirement
have been decreased from 15 to 10, II has been

[Cycle [Mem1 | Mem2 [ALU1 [ALU2 [MULT |

1 12

I1

I3:n+2

14

I5

16

I ES IR

Table 1: Modulo resource Table for sample program

[Cycle | Meml | Mem2 ALU1 [ALU2 | MULT |
1 I2:n4+2 | I6:n | I4:n+1 . o
2 I1:n+2 I5:n+1 I3:n+2

Table 2: Kernal Table for sample program

Figure 3: DAG of the example program after
adding spill code by the alogrithm of [1]
increased by one. However, the ideal result is that
schedule the program without II increasing. The
alogrithm of [1] could not give us ideal result in
this example program:

~ Besides that, if there is a dependence distance
in a program, adding spill code to the longest life-
time or the largest lifetime/cost could cause CII
increasing, see Figure 4. ’ »
The above example and Figure 4 show that:

.- If there isn’t empty Load/Store unit in ap-
_propriate timing while the longest lifetime or
- the largest lifetime/cost is being spilled, the

- initiation interval should be.increased.

. If the longest lifetime or the largest life-
time/cost is in recurrence path, inserting spill
code may cause II increasing.

To solve this problem, we select all lifetimes that

< i

v spill code

CIl = 2/1 CIl = 4/1

Figure 4: Adding a spill code to a value could cause
CII increasing. :

could be spilled as candidates and select a appro-
priate lifetime to be spilled out in order to avoid
increasing initiation interval. First, we calculate a
set of values could be spilled out. The equation is
shown below. SR "

VLifetime € LT, RR(Lifetime) > 2

LT is represented the set of all lifetimes, and RR
is represented register requirement. ,
Then, we make the modulo scheduling and allocate
register in the meantime. : ‘

At the last, we select a appropriate lifetime from
the lifetimes set to be spilled out.

Figure 5 shows the flow diagram of the schedul-
ing process by improved spill code technique, after
register allocating, a appropriate lifetime will be
selected to be spilled out to reduce register pres-

sure when required.

" Figure 6 shows how to add a spill code to mod-

[Cycle | Meml | Mem2 | ALU1 | ALU2 [MULT |
1 JIin+2[T6:n [I4:n+1 | | |
2 I'l:n+2 I5:n+1
3 Il:n+2 I3:n+2

Table 3: The Kernel table after adding spill code to value V2

(schedutng oy

Figure 5: A flow diagram of scheduling process by
improved spill code technique

ulo resource table by the improved spill code tech-
nique. In figure 6, RA is represented register avail-
able. We will select a lifetime to be spilled out
until lifetimes set becomes empty or loop requires
no ‘more registers than available. If lifetimes set
becomes empty and register pressure still exists, II
should be increased by one and schedule the pro-
gram again. '

ot gine

~ Add Spill Code

T

\L Succm | Fail

Calculate RR

Figure 6: Flow diagram of adding spill code pro-
cess by the Improved alogrithm

In example program (Figure 1), value V1, V2
and V3 could be spilled out, the sum of register
requirement could not be decreased if spill out Vi,

Il load V2 Y[V1]
12 load V3 Z{V1]
I3 mult V4 V3, V2
I4 add V5 V4, V2
2 load V'3 Z[V1-3]
I5 add V6 V5, V'3
16 store X[V1], V6

Table 4: Re-write sample program after spilling
“out value V3

spilling out V2 could cause increasing of II. As the
result we try to spill out V3. As the table 4 shows,
operation I'2 has been inserted to load value v3
before its consumer operation Add. the load op-
eration I'2 in table 4 could be inserted into table
2's second cycle memory unit2. The DAG of ex-
ample program (Figure 1) after spilling out V3 is
shown in Figure 7. The modulo resource table af-

A
VZ Ts ,Y}/
/ g
s
Mult
o~

>
e e
Hl—(spﬂhdopm
/ _____ —

Figure 7: DAG of example program after spilling
out V3

ter adding spill code is shown in table 5.
As the result, the sum of register requirements

" is 13 after spilling out lifetime V3.

" STRR=3(V1) +5(V2) + 1(V3) + 1(V13)
+1(V4) + 1(V5) + 1(V6) = 13

{Cycle] Meml | Mem2 | ALUI | ALU2 | MULT |
1 I2:n+2 I6:n I4:n+1
2 N:n+2 | I'2:a+2|I5:n+1 I3:n+2

Table 5: The Kernel table after adding spill code by Improved spill code technique

Avaliable Machine Register Number = 8
Sample No. | II++ | max LT or maxLT/T'raf | Improved alogrithm
1 1 II=7. =7 II=6
2 II=3 II=3 =3
3 II=5 II=5 II=4
4 II=15 II=11 II=9
5 II=35 II=5 II=4
6 IT=16 II=15 II=14
7 II=1 II=1 II=1
8 I1=13 Ir=12 II=12

Table 6: Comparison of II + +, max LT or max LT /Traf and Improved spill code technique

II of example program (Figure 1) is 2, and reg-
ister requirements is 13. Comparing with the
alogrithm of [1], improved alogrithm could give a
program a flexible scheduling result without II in-

_creasing.

If spilling out a lifetime which is in a recurrence

path could cause CII increasing, the lifetime should -

be removed from the candidate lifetimes set.

6 Preliminary Results

In order to verify our algorithm, we selected eight
examples from the Livermore benchmarks (kernel
5,3,2,7,11,10,12 and 19) to' do a préliminary exper-
iment. The machine model we used in the experi-
ment is shown in Table T

| Unit | Operation | Number | Latency]
Memory | Load/Store 2 1
ALU | Add/Sub 3 1
Mult Mult 1 1

“Table7: Machine Model

Table 6 gives the initiation intervals obtained by .- -

the previous algonthm and our new algorithm. It
is easy to see from this table that using the im-

proved alogrithm could 'generate ‘smaller II than
the alogrithm of [1]. Specially, for the loops. with
recurrences (kernel5, 2, 7, 11, 10), spilling out ap-

propriate lifetime (not limited to the longest life-
time or the largest lifetime/cost) correponds to the

shortest execution time.

7 Conclusions

In this paper we have presented a simple spilling
method for software pipelining in the face of a
bounded number of registers. This method finds
the appropriate lifetimes to spill for a loop with re-
currences so that the initiation interval (II) is not
increased. The preliminary experimental results
indicate that the algorithm can efficently improve
the performance of the existing spilling scheme.

References

[1] J.Llosa, M.Valero and E.Ayguade, ”Heuristics
for Register-constrained Software Pipelining”,
Proc. of the 1996 Int’l Conf. on. Mlcroarchltec-
ture, pp. 250-261 1996.

[2] B.R.Rau a.nd J.A Fisher ”Instructlon-level

- parallelism: History, overview and perspec-
tive”, j..of Supercomputmg, vol: 7, pp. 9-50,
May 1993

3] V.H.Allan, R.Jones, R.Lee, S.J.Allan ”Soft-
ware Pipelining”, ACM Computing Surveys,
Sep. 1995. .

