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Abstract: Most existing static scheduling algorithms order the tasks for one fixed number of processors. In
this paper we propose a new scheduling method, called Parallelism-Independent Scheduling Method ~ which
enables the scheduled program to be executed efficiently on parallel computers with any degree of parallelism
(DOP). We propose two variants, each of which has the following phases: obtaining a parallel schedule by list
scheduling heuristics, optimization by rearranging the tasks in each level to adapt different DOP, and
serialization of the schedule. To prove the efficiency, we have made simulations with random DAGs and
compared the results to those obtained by the Critical Path Algorithm applied separately for each DOP.
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the assumption of a fixed degree of parallelism and
that is the reason why the generated parallel object
code cannot be executed efficiently or at all on a
computer with different degree of parallelism. To
execute the program on a computer with different
degree of parallelism in minimum time, the source
code of the program needs to be translated again with
another parallelism dssumption.

To 'solve this problem, we propose a static
scheduling method called a Parallelism-Independent
Scheduling Method. The Parallelism-Independent
Scheduling Method produces a parallelism-
independent object code which can be executed on

1. Introdilction

The performance of parallel computers depends to a
great degree on the compiler’s ability to generate
code that can be executed by the hardware in an
appropriate order. Compilers incorporate instruction
scheduling phase in which the instructions are
arranged statically, so that if they are executed in this
order on the target machine, the execution time will
be optimized. When executing a program on a
parallel computer, the source code of. the program is
translated by the parallelising compiler into a parallel
object code which has the same degree of parallelism

as that of the parallel computer. The compiler
generates a precedence task graph after flow analysis,
then uses an instruction scheduling method like
- Critical Path Method (CPM) [2] to generate the
program's object code. The scheduling is done with

parallel computers with any degree of parallelism
with near-optimal time.

We propose two  Parallelism-Independent
Scheduling algorithms developed under the
assumptions that the program code does not include
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branches and loops, each instruction has an unit
execution time, all the processors in the
multiprocessor system are homogeneous and there is
no inter-processor communication overhead. In order
to evaluate the performance of the proposed
algorithms we have made simulations using random
graphs with different input parameters as number: of
nodes and edges and different degree of parallelism.
For evaluation purposes a trace of random graphs
with equal degrees of parallelism have been
examined and the average values of the results in
terms of schedule length have been taken. The
prograim is scheduled only once using a Parallelism-
Independent scheduling algorithm and the schedule
lengths forits execution with different degrees of
parallelism. are compared to the schedule lengths
obtained by using the CP algorithm but applied
separately for each possible degree of parallelism.

The remainder of this paper is organized as
follows: in Section 2 we present previous work
related to static scheduling for multiprocessor
systems. In Section 3 we describe in detail the basic
idea of the Parallelism-Independent Method and the
proposed by us two - algorithms: Parallelism-
Independent Simple (PIS) and Parallelism-
Independent Critical Path (PICP) - algorithm. In
Section 4 we present the simulation results and
comparison of the two algorithms, and draw the
conclusions in the last section.

2. Related Work

The. utilization of - the big potential of the
multiprocessor architectures depends very much on
the effective instruction scheduling and that is the
reason why there are many researches in this area.
The problem of scheduling a set of precedence-
related tasks forming a directed acyclic graph (DAG)
is known to be NP-complete except in some
restricted cases: 1. scheduling a tree-structured DAG
with identical instruction execution times to arbitrary
number of processors (applying Hu’s algorithm
which uses a level number - the length of the longest
path from a node to the exit node); 2. scheduling an
arbitrary DAG with identical instruction execution
times to two processors, shown by Coffman [1], and
3. scheduling an interval-ordered DAG to an
arbitrary number of processors, proved by
Papadimitriou and Yannakis. Because of the NP-
completeness of the problem, there have been a large
number of static scheduling heuristics described in
the literature under different assumptions for the
execution time and communication costs [4].

The most common technique for DAG
scheduling is the list scheduling: assigning priorities

to the nodes of the DAG and allocating the nodes for
execution to the available processors in order of their
priorities. The quality of the algorithms depends on
the accuracy with which the priorities of the nodes
are defined. Adam, Chandy and Dickson [5] suggest
that using a level number as node priority is the
nearest solution to optimal. Many task scheduling
schemes use the classical Critical Path heuristic
because the ‘tasks belonging to the CP determine the
shortest possible time for execution of the whole
program. The steps of the CP algorithin consist of
defining the longést exit path for each graph node,
rank the nodes according to the length of these paths
and assign nodes for éxecution in their rank order.
The CP algorithm does not consider the weight of the
nodes in the node’s subtrees. - Shirazi, Wang and
Pathak [2] propose a Weighted Length Algorithm
which takes into account the relationships among the
nodes at different levels and the rank of the node
depends on the length of the exit path, the number of
the children and the weights of the children and their
descendants.

Instruction scheduling has a significant role in
superscalar processors too because their performance
depends to a great degree on the exploitation of the
instruction level parallelism (ILP). The scheduling
helps for exposing more ILP in the instruction stream
and although the superscalar processors use hardware
to  schedule instructions dynamically, their

‘performance often depends on the compiler-specified,

static scheduling. So scheduling can be done both at
compile time and dynamically with the purpose of
enabling as many instructions as possible to be issued
for execution per cycle. Some researches extend the
traditional static instruction scheduler so that it takes
advantage of the hardware resources for out-of order
instruction issue.

However, all the static scheduling algorithms so
far assume fixed degree of parallelism and the code
obtained by using these algorithms could be executed
efficiently only on a machine with the same degree of

- parallelism. To the best of our knowledge, we are the

first to propose a scheduling method which enables
program execution effectively on parallel computers
with different degrees of parallelism without
necessity to reschedule the programs for each number
of processors they are run on.

3. Parallélism-lndependent Scheduling
Method

The Parallelism-Independent Scheduling Method is a
method for producing a parallelism-independent code
as a list of serially ordered tasks separated by special
boundary markers called parallel execution limits.
They specify the number of instructions, (tasks) that
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can be executed simultaneously with  different
degrees of parallelism. In this way parallel computers
with different degree of parallelism can - exploit
efficiently ‘all the instruction-level parallelism that
appears in this list of serially ordered tasks: The
ready instructions are assigned for execution to the
processors 'in a serial order until information for a
parallel execution limit correspondmg to the degree
of parallelism of the computer is met, then the
assigned tasks are executed in parallel. After that
another set of tasks is assigned and executed in
parallel. The process is repeated until the end of the
task list.

We propose three algorithms for PI scheduling:
Parallelism-Independent Simple (PIS) Scheduling
and Parallelism-Independent Critical Path (PICP)
Scheduling. We have developed these algorithms
under the assumption that the precedence task graph
representing the program is a directed acyclic graph.
Each node in the graph represents an instruction and
the edges between the .nodes represent the data
dependencies - between the. instructions. All the
instructions have uniform unit execution times. The
processor are homogeneous .and the inter-processor
communication is ignored.

The scheduling framework for the proposed
algorithms is as follows:

1. Assigning priorities to the nodes of the DAG
according to some heuristics and building a sorted
priority list of instructions (instructions with higher
priority appear earlier in the priority list);

2. Forming blocks of instructions taking the data
dependencies between them and the instruction
priorities into account. Instructions which can be
executed simultaneously appear in one block:

3. Optimization phase in which the instructions are
rearranged in the blocks so that they can be executed
efficiently with different degrees of parallelism;

4. Forming a serially ordered list of tasks by
connecting all the blocks from top to bottom;

S. Attaching information for the parallel execution
limits: the serialized sequence of instructions is
examined from ‘top to bottom whether the
instructions can be executed with different degrees of
parallelism and if not, a marker indicating this is
inserted.

3.1 Parallelism-Independent Simple Scheduling
(PIS) Algorithm

We use in this algorithm two functions for ordering
the tasks: their co-levels (the length of the longest
path from the task to the input node) for forming of
blocks, and the distance between predecessor and
successor tasks -in -two successive blocks for
determining the exact position of each task in the

blocks. The purpose is to arrange the tasks in such a
way that the - distances between immediate
predecessors and successors in two successive blocks
is maximum. This maximum distance will make
possible the ‘execution of. the instructions *with

- different degrees of parallelism.

"The steps of this algorithm are brleﬂy explamed
below through a simple example of a sample DAG:
1. At this stage the number of the processors is’
assumed to be unlimited. The instructions are ordered

-into blocks according to the length of the path from
‘them to the input node, so that instructions which can

be executed simultaneously are ordered into- one
block as shown in Fig.1a.

2. In the first block instructions with greater number
of successors have higher priority and appear earlier
in it. If the instructions are with equal number of
successors, then the instructions appear in the block
according to their number. The arrangement of
instructions in the successive blocks is done
according to their distance from their immediate
predecessors in the previous block. The distance
between successor and predecessor shows the
number of instructions that have to be assigned for
execution between. them. Those instructions which
have greater distance from their intermediate
predecessor in the previous block appear earlier in
the next block. If the instructions have the same
distance from their predecessor, the instruction with
greater number of successors is given a “higher
priority (Fig. 1b).The distances are shown above the
number of the instructions in that figure. For example
dist-pos1,.s = 4 is the distance between task 1 and its
successor task 5, if task 5 is placed on first position in
the second block B2. That distance is equal to 4
because four ready tasks with higher priority (tasks 1,
2, 3, 4) have to be assigned for execution, before
task 4 is assigned to a processor and executed. In the
same way we can determine dist-posl,¢ = 1, dist-
posly; =2, dist-posls g =3, and dist-posl, = 2. Task
5 is put on first position in the second block B2
because its distance from task 1 is greater than the
distances of all the other tasks in block 2, if placed at
first position. In this way all the tasks in the second
block B2 are ordered according to their distances to
their predecessors in block B1. Then the value of the
distances between predecessor and successor is
readjusted according to the position of the fask: dist-
poslys = 4, dist-pos2; 5 = 4, dist-pos34. = 4, dist-
posdy; =5, dist-pos5,.¢ = 5, as shown in Fig. 3b. For
task 4 the smaller distance to its immediate successor
task 9 is taken. We have to note that tasks 7 and 9
will have equal distances, if placed at position 3, but
task 9 has greater number of successors and that is
the reason: it is given a greater - priority than 7.

~159—



Similarly the process is repeated until the positions of
all the tasks are determined in all the blocks.

-
I8 07 | -0

(a) (b)
Fig. 1 (a) Forming of blocks; (b) Rearranging of the
instructions in the blocks

1 3 4 2 [x5] - 5 8 9 7
6 10 18 14 15 16 11 [x4] 17
[x6] 12  [x3]1[x4] 19 [x3] [x4] [x5] 13

Fig. 2 Insertion of parallel execution limits in the
serialized schedule

The schedules for the DAG of Fig. 1 when it is
executed on different degrees of parallelism are given
on Fig. 3a. The schedules when the sample DAG is
scheduled using CP algorithm for each degree of
parallelism are presented in Fig. 3 b. We can see in
Fig. 3a that at some cycles there are idle processors
which if utilized, could lead to a better schedule. This
problem is solved by the next algorithms described in
Section 3.2. On Fig. 2 we show the phase in which
the markers for the execution limits are attached. [x5]
means that the instructions after it cannot be executed
with ' the instructions before it with degree of
parallelism 5. ‘

::2—‘ P1|P2|P3} - P1|P2[P3{P4 P1|P2|P3|Pa|P5
1 T—S- 1 1 314 1 113 412 1 1 3|42
2 [alz] 2[z2s]e| 2[s|e]o]e] 2 [5|s]o]s]?
afsls| a(s]e]|7 a |71wfief1a] 3 |10fis]1alis]e
4 2|6 4 1018|114 4 16116 11 4 117
5 7 {0 8 Blieln 5 17|12 5 12j18
6 |18]1a| & Ji17][12 6 |19 6 |13
7 1516 7 19 7 13
8 117 8 13
9 f12]1e
10 |13

Fig. 3a Length of the schedules for different degrees
of parallelism using PIS Scheduling Algorithm

Pt|P2 P1|P2|P3 Pi|p2|Pafrs P1fpz{pPa|Palps
1 1]z 1 litz]a 1 f1]2]s|e 1 {1234
2 |3]a 2 la]|s]e 2 [s]|ef7]e 2 |sflel7|8]e
3 (s a |7]8}10] s |10]|18f18]0 a3 [1o]1e|18f1a] 15
' EAR] a4 (181811 s {1 |17f1af1s 4 {117
s |1o]1e s [17]|1|12] 5 [12]10 s [12|1e
e [18]11 8 [19|14]15] & |13 s |13
7 |7fe 7 |1a
8 |12]10
® liaj14
1015

Fig. 3b Length of the schedules for different degrees
of parallelism when using CP algorithm applied
separately for each degree of parallelism.

3.2 Parallelism-lndependent Critical Path (PICP)
Scheduling Algorithm

The difference of PICP algorithm and the PIS
algorithm is that in the first step the program is
scheduled using the CP algorithm. The CP algorithm
is applied for degree of parallelism p equal to the
minimum number of processors necessary for
execution of the program with schedule length equal
to the CP in the DAG.

We define p as follows: p = N/Length of CP T+ o0
where N is the total number of instructions in the
graph, and o is a non-negative number which cannot
be determined easily. In order to determine p exactly
first the program is scheduled for number - of
processors equal to (N/Length -of CP) and if the
schedule length is longer than the CP, then the
process is repeated for number of processors P+1 and
so on until the schedule length becomes equal to the
CP in the DAG. For our sample DAG, the value of p
is four. The rearrangement of the tasks in the blocks
is shown on Fig. 4.

P2 Pt P2 |P3 P1|pP2|P3ipPa
1 )11]2 1 j1j2]a 1 |1 ]2]3]a
2 |3]4 2 lalsle 2 i5)6|8|7
a|s|s]l s |8fl7]e 3 |9 {i0]18]16
4|87 4 |10]18]18 a4 [18{15)11[17
5 | 9|10 5 |14 5 {12}1e
& |1a18 s {17]12 6 (13
7 14 |16 7 19
8 [11{17 8 |13
8 |1zfve
10|13

Fig. 4 Length of the schedules for different degrees
of parallelism using the PICP scheduling algorithms

4. Simulations

To prove the effectiveness of our algorithms we have
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made _ simulations using random graphs and
compared the results to those given by the CP
algorithm applied separately for each degree of
parallelism. The CP algorithm is used for comparison
because it has been shown to provide schedules
within 5% of the optimal in 95% of the random cases.
We have used for the simulations ANSI C in Unix
environment. .

In"order to carry out our experiments and 25
random graphs with 250 nodes/1000 edges (p=8), 25
random graphs with 500 nodes/2000 edges (p=12).
For each of these graph types the average deviations
from the results of the CP method have been taken.

Graphs with a specific degree of parallelism (p=8
or 12) have been obtained as we separate the nodes
into levels and the nodes in each level are chosen
successors randomly from the nodes in a limited
number of levels below. Of all the generated random
graphs, we have taken for our experiments only those
which can be executed with time equal to the length
of the CP on minimum number of processors equal to
8, or 12 respectively. This has been done to make it
possible to take average results from the experiments.
The ratio between the number of the nodes and the
edges is taken to be 4 as a typical value in DAGs
representing a user’s program.

When using the PIS or PICP scheduling
algorithms, the DAGs are scheduled only once and
from the so generated list of serially ordered tasks,
schedules for different degrees of parallelism can be
formed. The schedule lengths for the different
degrees of parallelism are compared to the schedule
lengths obtained using the CP algorithm applied
separately for each degree of parallelism.

The maximum values for the execution time
ratio for the PIS algorithm are reached for degree of

parallelism equal to p, and for the other two .

algorithms for degree of parallelism equal to (p-1).
The execution time ratio becomes equal to 1 for the
PICP for degrees of parallelism equal to p or (p-1).
For the PIS algorithm the time execution ratio
becomes 1 for degree of parallelism greater than p
which depends on the maximum degree of the
parallelism in the graph. On Fig. 5a and 5b we
present the results for 2 sample DAGs with p=12, the
maximum deviation for the PIS algorithm 11.6% for
the first graph and 15.1% for the second graph are
achieved for number of 12 and 11 processors
respectively. The increase of the maximum
parallelism in the graph affects the results of the PIS
algorithm at a great degree as seen from those two
figures. i -

In Fig. 6 we present the results for the PICP
algorithm for 4 sample graphs with same p=8 but
different ratio between the number of the edges and

the number of the nodes. With increase of the
number of the edges in the graph, the Execution
Time Ratio for the PICP algorithm increases as well.

A Sample DAG with 500 nodes/2000 edges, p=12, maximum
parallelism 19

1.12

10

—_
—_

1.08
1.06
1.04
1.02

Execution Time Rat

N <+ © oo O o @«
— -

—

16
18

Number of Processors

a) DAG with maximum parallelism 19

——PIs
—&—PICP

A Sample DAG with 500 ﬁodes/ 2000 edges, p=12, maximum parallelism

22

1.16
1.14
1.12
1.1
1.08
1.06
1.04
1.02
1

10

Execution Time Rat

N - © o0 O N T © o©
- - Y - T

Number of Processors

Fig. 5 Results for 2 Sample DAGs with different
degrees of parallelism. With increase of the degree of
parallelism of the graph, the deviation of the results
of the PIS algorithm from that of the CP algorithm
become greater. ’

The average results we have obtained for 25
graphs
nodes/2000 edges are presented in Fig. 7 and 8 and
could be summarized as given below, in brackets we
give the values between which the maximum
deviation fluctuates:
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1. 250 nodes/1000 edges (p=8), results for 25.

random DAGs - Fig. 12:

® PIS Scheduling algorithm: Maximum average
deviation 12.6% (min 6% - max 17.6%)

Average Values for 26 DAGs with 250 nodes/ 1000
edges, p—8 '

@  PICP Scheduling algorithm: Maximum average P 1. 14

deviation 7.7% (min 5.6% - max 9.7%) & 112

' o 1.1 ,

2. 500 tasks/2000 edges (p=12), results for 25 E 1.08 [—=ps
random graphs- Fig. 13: c 1.06 —=—PicP
® PIS Scheduling algorithm: Maximum average £ 1.04

deviation 14.1% (min 9.1% - max 17.4 %) 3.
®  PICP Scheduling algorithm: Maximum average LQE 1.02

deviation 9.5% (min 6.5% - max 13%) 1

NS ©® 0 O o
- ~— — —
Results for PICP algorithm for Sample DAGs with 250 Number of Processors
nodes and number of edges 1250, 1500, 1750. For all the

graphs p=8. Fig. 7 Average results taken for 25 DAGs with 250

nodes/1000 edges, p=8.

2 1.12

2 1.1

° . —o—1250
£ 1.08 ngzs
: 106 edges
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3

)
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Nt © 0 O o
—

—
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Fig. 6 Results for PICP algorithm for DAGs with 250
nodes and p=8. The Ratio between the number of the
nodes and the number of the edges is 5, 6 and 7
respectively. The maximum execution ratio is 8.1%,
8.3% and 11.1% respectively for 7 processors.

5. Conclusion

The main contribution of this paper is the proposition
of static scheduling algorithms not depending on the
degree of parallelism which generate schedule
enabling the execution of the program on variable
number of processors with schedule length
comparable to the optimal. The results show that
when the programs scheduled by the PICP algorithm
are executed on variable number of processors, the
execution time does not exceed that of the time
obtained by the CP aIgonthm more than 10% in most
of the cases.

Average values for 25 DAGs with 500 nodes/2000 eges, p=12

1.16
114
112

1.1
1.08
1.06
1.04
1.02

Execution Time Ratio

o g

Number of Processors

Fig. 8 Average results taken for 25 DAGs with 500
nodes/2000 edges, p=12
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