HERT—FFIF vy 131-5
NANT = TR o0 o
arEa—F5a4 7 :

(2000. 3. 2)

Some Optimisations of DL_POLY Molecular
Dynamics Simulation Code on the Fujitsu
VPP700

KHOLMIRZO KHOLMURODOV**, WILLIAM SMITH®,
KENJI YASUOKA® AND TOSHIKAZU EBISUZAKI®

@ Computational Science Division, Advanced Computing Center,
The Institute of Physical and Chemical Research (RIKEN),
Hirosawa 2-1, Wako, Saitama 351-0198, Japan

tel: +81-48-467-9415, faz: +81-48-467-4078

e-mail: mirzo@atlas.riken.go.jp
bDaresbury Laboratory, Daresbury, Warrington, Cheshire, UK, WA4 4AD

¢ Department of Mechanical Engineering, Keio University,
Yokohama 223-8522, Japan

* Permanent address: Laboratory of Computing Techniques and

Automation, Joint Institute for Nuclear Research, Dubna, Moscow region,
141980, Russia

ABSTRACT

This work is devoted to the optimisation of the molecular dynamics (MD)
simulation code DL_POLY on a vector computer. DL_ POLY is a
FORTRAN package of subroutines and data files, designed for the MD

- study of a wide range of physico-chemical and biological systems on a
distributed memory parallel computer. It was written at Daresbury
Laboratory by W.Smith and T.R.Forester under the auspices of the
Engineering and Physical Sciences Research Council (EPSRC) in the
United Kingdom for the EPSRC’s Collaborative Computational Project
(CCP5) for the computer simulation of condensed phases. DL_POLY is a
general purpose MD simulation package, but it was not designed
specifically to run on vector machines, and consequently the efficiency of
the code on such machines may be enhanced. Hence, the main purpose of
this reported optimisation of the DL_POLY package was to increase the
performance of the code on vector computer.

1. Introduction

In this work we consider some optimisations of DL_POLY molecular dy-
namics (MD) simulation code on a vector computer. DL_POLY is a general
purpose FORTRAN package, designed for the MD study of a wide range
of physico-chemical and biological systems on distributed memory paral-
lel computers [1]. It was written at Daresbury Laboratory by W.Smith
and T.R.Forester under the auspices of Collaborative Computational Project
(CCP5) for the computer simulation of condensed phases. The code is doc-
umented in reference [2] and the algorithms employed in the original code
are described in references [3-6]. The package was not designed to run on
vector machines so that the efficiency of the code on such machines could
be enhanced. Hence, the main purpose of this reported optimisation of the
DL_POLY package was to increase the performance of the code on vector
computer. We have specifically used the Fujitsu VPP700E/128 vector ma-
chine at RIKEN and tested the tuned code on several specific benchmark
systems. Optimal performance was found to require considerable re-coding.
Analysis of the code showed that a significant fraction of the time (about
50%) is spent calculating the forces. Many time consuming loops in the code
are not vectorisable in their original form and often the compiler was unable
to recognise that certain loops are in fact vectorisable (because the array
elements in the loop can be assumed to be non-recursive).

2. Optimisation of neighbour list generation

The optimisation work on the DL_POLY package has concentrated on
the restructuring of the central link-cells” MD algorithm for constructing
of the neighbour list and improving the procedure for calculating atomic
forces. It is worth noting that DL_POLY calculates the nonbonded pair in-
teractions using a Verlet neighbour list [7, 3], which records the indices of all
'secondary’ atoms within a certain radius of each ’primary’ atom; the radius
being the cut-off radius (7.) normally applied to the nonbonded potential
function, plus an additional increment (Arc,:). The neighbour list removes
the need to scan over all pairs of atoms in the simulation at every timestep.
The larger radius (r.; + Are,:) means the same list can be used for several
timesteps without requiring an update. The frequency at which the list must
be updated depends on the thickness of the region Ar.,. In DL_POLY the

following two methods are implemented to construct the neighbour list: the
first is based on the Brode-Ahlrichs scheme [8] (viz., subroutine "parlst”)
and is used when 7., is large in comparison with the simulation cell; the
second uses the link-cell algorithm [9, 10] (viz., subroutine ”parlink”) when
Teut 18 relatively small. The performance of the above schemes on vector
machines is quite different depending on their degree of vectorisation. In
the original version the Brode-Ahlrichs scheme is relatively vectorisable. As
regards the "link-cell” scheme, improving its efficiency on vector computers
is a challenging task and has been the subject of many studies [11-13]. A
vectorised version of the "link-cell” algorithm has been described by Rapa-
port [11] and practically realized in [12]. A partially vectorised ”link-cell”
subroutine for DL_POLY package has been proposed by S.Liem in [13]. Nev-
ertheless, a large proportion of time (about 21 percent of CPU time) was
still used in the tuned ”parlink” subroutine which makes this subroutine a
potential target for further enhancement [13].

The subroutines "parlink” and "parlst” in DL_POLY construct the neigh-
bour lists which identify all potential interaction pairs according to the pre-
defined distance criterion. These lists are updated frequently to account for
the dynamic nature of the system (density fluctuations, diffusions of atoms,
etc.). The poor performance of ”parlink” subroutine on a vector computer
was basically due to the short vector lengths of most loops. In many cases
most of the execution time is consumed by "parlink” and this subroutine in
its original form is substantially non-vectorisable. Hence, one of the basic
steps for restructuring of previously un-vectorisable loops here has been in-
cluded in the increasing of the vector lengths for central loops. To vectorise
the "parlink” subroutine we have preliminarily constructed the following two
new lists:

list (icell,i) = i’ and list2(icell,) = j'.

It should be noted that the conventional link-cell method [9, 10] goes
through the following steps: (1) MD cell is divided into contiguous cubic
subcells (icell); (2) all atoms are alloted in accordance to their coordinates
to the appropriate subcell; (3) the interaction between each included atom
and its neighbours in the same subcell or in one of the neighbouring subcells
(26 in three dimensions) is calculated. Double counting of interactions is
avoided by excluding half of the neighbouring cells from consideration. The
first of the above two lists (vis. list1) assigns all the atoms to the appropriate

cell (numbered icell) in accordance with the "particle-cell” scheme, while the
second list (list2) defines all the atoms in 13 of the cells neighbouring cell
icell. From these two lists we can now contruct the final list

list(i,7) = 7',

which contains all potential interacting pairs (i.e. assigns the atoms in
"particle-particle” pairs). By defining a maximum atom number over each
cell we have increased the vector length in the main loop of "parlink”: now
in the main two do loops over subcells the loop do i = I,natms is inner
one.

We have also tuned the ”parlst” subroutine, which constructs the neigh-
bour list in accordance with the Brode-Ahlrichs scheme, which originally was
vectorisable. By introducing a new logical array, which checks the neighbour
list capacity, we have reached a full vectorisation of this subroutine. A sum-
mary of the optimisation results on the "parlink” and "parlst” codes is given
in the table below. The efficiency of the subroutine ”parlink” which uses
a significant amount of total CPU time has now been improved and the
vectorisation proportion is now at 96 percent.

Table: The optimisations of ”parlst” and ”parlink” codes.

Subroutine | ORIGINAL(Percent) | OPTIMISED (Percent)
" parlst.f” 51 99
?parlink.f” 0.1 96

The essential modifications have been made in the forces subroutines too,
while retaining all the universality possessed by the original code (e.g. the
tests for ’frozen’ atoms, or for ezcluded atoms for macromolecules, etc.).
Originally, the forces subroutines calculated only the interactions for one
specific central atom per call. These now contain the conventional double
loop in each force subroutine, so all interactions can be evaluated with just
one call to the relevant subroutines. The efficiency of the proposed codes has
been tested on the Fujitsu VPP700/128E vector computer and for several
DL_POLY benchmark systems [14]. The results agree with the original, and
thus the optimised codes are verified with respect to the tested systems.
In the constructing of neighbour list and calculating of atomic forces our
optimised codes are significantly faster than the original one.

References

(1] Smith, W. and Forester, T.R., 1996, Molecular Graphics, 14, 136.

(2] Smith, W. and Forester, T.R., 1999, The DL_POLY User Manual. Ver-
sion 2.11, Daresbury Laboratory.
See also www.dl.ac.uk/TCS/Software/DL_POLY.

3] Smith, W. and Forester, T.R., 1994, Comput. Phys. Commun., 79, 52.
[4] Smith, W. and Forester, T.R., 1994, Comput. Phys. Commun., 79, 63.
[5] Forester, T.R. and Smith, W., 1994, Molecular Simulation, 13, 195.
[6] Smith, W., 1992, Comput. Phys. Commun., 67, 392.

[7] Allen, M.P., and Tildesley, D.J. 1989, Computer Simulation of Liquids.
Oxford: Clarendon Press.

(8] Brode, S., and Ahlrichs, R., 1986, Comput. Phys. Commun., 42, 51.

[9] Hockney, R. W., and Eastwood, J. W. 1981, Computer Simulation Using
Particles. McGraw-Hill International.

[10] Heyes, D. M., and Smith, W. CCP5 Quarterly 26, 68 (1987).
[11] Rapaport, D. C., 1988 Comp. Phys. Rep., 9, 1.

[12] Grest, G. S., Dunweg, B., and Kremer, K., private communication.;
Kremer, K., Grest, G. S., and Carmesin, I. 1988, Phys. Rev. Lett., 61,
566.

[13] Liem, S., UMIST-FECIT Collaboration Report, private communication
(1998).

[14] Kholmurodov, K.; Smith, W.; Yasuoka, K; Ebisuzaki, T., 2000, Comput.
Phys. Commun., 124, 1 (to be appear).

