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1. Introduction 

Antibodies, crucial immune proteins 

generated in response to infections, consist 

of two heavy chains and two light chains. The 

overall structure of antibodies contains six 

variable regions determining specificity 

known as Complementarity Determining Regions 

(CDRs). In this study, assuming a given 

antigen and antibody framework, we focus on 

CDR design (sequence-structure co-design). 

However, with the vast search space for CDRs, 

experimental testing is impractical with 

traditional methods. However, with the vast 

search space for CDRs—where a sequence with 

𝐿  amino acids yields up to 20𝐿  possible 

sequences— makes experimental testing 

impractical with traditional methods. 

Recently, co-designing structures and 

sequences is achieved through the Diffusion 

Model and Transformer[1], with the 

Transformer architecture viewed as a type of 

Graph Neural Network (GNN)[2]. However, GNNs 

have limitations in heterophilous graphs, 

where nodes with different characteristics 

have numerous neighboring nodes. In protein 

networks, where amino acids of different 

types interact, the graph is heterophilous. 

Addressing this limitation is crucial for 

advancing antibody design problems. 

In the study, we explore the p-Laplacian 

regularization, addressing heterophily and 

enhancing the task of antibody design. 

2. Related works 

Self-Attention for Heterophily. Self-

Attention, the core of Transformers, operates 

by updating token representations through the 

aggregation of information from other tokens, 

acts as a low-pass filter[3], emphasizing 

commonalities and smoothing differences in 

token features. Thus, this mechanism is not 

suited for heterophilic networks as it 

encourages connected nodes to be alike. 

p-Laplacian regularization. In machine 

learning, there is work utilizes Laplacian 

with fidelity to combat over-smoothing in 

Transformer models[4] and incorporating p-

Laplacian in Transformer models, showcasing 

advantages in Language Modeling and Image 

Classification[5]. However, none of previous 

works have tried the technique to the task of 

antibody design. 

3. Methods 

An amino acid in a protein complex is 

characterized by its type (𝑠௜ ∈

{ACDEFGHIKLMNPQRSTVWY} ), 𝐶ఈ  atom 

coordinate (𝑥௜ ∈  ℝଷ), and orientation (𝑂௜ ∈

 𝑆𝑂(3)). Here, 𝑖 =  1 …  𝑁, and 𝑁 represents 

the total amino acids in the complex across 

all chains. Our focus is on enhancing the 

Transformer block to tackle heterophily in 

protein structures. The baseline model is 

inspired by Luo et al.'s work on Antibody 

Sequence-Structure Co-design[1], utilizing a 

Transformer block within a Diffusion model. 

Please refer to the original paper[1] for 

detailed insights into the Diffusion model. 

In the diffusion process, Transformer 

blocks encode the CDR state at a time step 𝑡 

with the context structure ൛𝑠௝
௧ , 𝑥௝

௧, 𝑂௝
௧ൟ

௝ୀ௟ାଵ

௟ା௠
 ∪

 ൛𝑠௝
௧ , 𝑥௜

௧, 𝑂௜
௧ൟ

௜ୀ{ଵ… ே} \{௟ାଵ… ௟ା௠}
. Information is 

generated for step 𝑡 + 1 to denoise the CDR 

amino acid types, positions, and orientations.  

Amino acid and pair embeddings use distinct 

MLPs. The single amino acid MLP generates 𝒆𝒊, 

encoding amino acid types, torsional angles, 

and 3D coordinates. The pairwise MLP encodes 

Euclidean distances and dihedral angles 

between amino acids 𝑖  and 𝑗  into feature 

vectors 𝒛𝒊𝒋 . After that, hidden 

representations 𝒉𝒊 is derived from 𝒆𝒊  and 

𝒛𝒊𝒋 ,representing the amino acid and its 

environment. Two types of embedding, 𝒛𝒊𝒋 and 

𝒉𝒊, are then obtained. 
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 The encoder, with a stack of attention 

layers, captures amino acid relationships for 

denoising. Let 𝒉𝒊
𝒍 be the hidden output from 

the last layer. Attention weight computation 

between residues 𝑖  and 𝑗  is 𝑤௜௝ =

softmax௝ୀଵ
ே (𝑎௜௝) . Where 𝑎௜௝  =  〈𝑞(𝒉𝒊), 𝑘(𝒉𝒋)〉 +

 𝑓(𝒛𝒊𝒋) +  𝑔(𝑥௝) . Here, 𝑞, 𝑘, 𝑓, 𝑔  are MLP 

subnetworks, and 𝑥 is the location of the 

heavy atom. Three new embedding vectors are 

generated following conventional Transformer 

block equations: 

𝒉𝒊
ᇱ = ෍ 𝑤௜௝ ∗ 𝑣൫𝒉𝒋

𝒍൯

ே

௝ୀଵ

, 𝒛𝒊
ᇱ = ෍ 𝑤௜௝ ∗ 𝑣൫𝒛𝒊𝒋൯

ே

௝ୀଵ

,

𝒙𝒊
ᇱ = ෍ 𝑤௜௝ ∗ 𝑣(𝒙𝒋)

ே

௝ୀଵ

 

Here, 𝑣  is another MLP subnetwork. The 

concatenated vector [𝒉𝒊
ᇱ, 𝒛𝒊

ᇱ, 𝒙𝒊
ᇱ]  is processed 

through an additional MLP subnetwork with a 

residual layer, akin to the traditional 

Transformer block. This step yields the 

output 𝒉𝒊
𝒍ା𝟏 used for denoising amino acid 

types through an MLP, generating a 

20−dimensional vector of posterior 

probabilities. The same procedure is applied 

for denoising 𝐶 ఈ and orientations. Based on 

the analysis of Nguyen et al.[5], we propose 

a straightforward modification to the 

aforementioned three equations: 

    𝒉𝒊
ᇱ = ෍ฮ𝒉𝒊

𝒍 − 𝒉𝒋
𝒍ฮ

௣ିଶ
𝑤௜௝ ∗ 𝑣൫𝒉𝒋

𝒍൯

ே

௝ୀଵ

 

       𝒛𝒊
ᇱ = ෍ฮ𝒛𝒊𝒊 − 𝒛𝒊𝒋ฮ

௣ିଶ
𝑤௜௝ ∗ 𝑣൫𝒛𝒊𝒋൯

ே

௝ୀଵ

 

    𝒙𝒊
ᇱ = ෍ฮ𝒙𝒊 − 𝒙𝒋ฮ

௣ିଶ
𝑤௜௝ ∗ 𝑣(𝒙𝒋)

ே

௝ୀଵ

 

4. Experimental Results 

For evaluation, we remove the original CDR 

from each antibody-antigen complex within the 

test set and sample both the sequence and 

structure of the removed region. The CDR 

length is exactly same to the original. 

Metrics for assessing designed antibodies 

include RMSD (Root-Mean-Square Deviation): 

Measures 𝐶 ఈ deviation between generated and 

original structures with aligned antibody 

frameworks; AAR (Amino Acid Recovery Rate): 

Quantifies recovery rate by sequence identity 

between reference and generated CDR 

sequences[6]. 

We compare our model (DiffAb+Lap) to DiffAb 

from Luo et al.[3]. The optimal parameter, 

𝑝 = 1.8, chosen from the set 𝑝 = {1,1.5,1.8}. 

Each model produces 100 CDR samples, refined 

by OpenMM and Rosetta. Table 1 demonstrates 

that DiffAb+Lap achieves superior CDR 

sequence recovery (higher AAR) and lower or 

comparable RMSDs compared to DiffAb. 
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CDR Method AAR RMSD  CDR Method AAR RMSD 

H1 DiffAb 

DiffAb+Lap 

65.75% 

68.05% 

1.188Å 

1.109Å 

 L1 DiffAb 

DiffAb+Lap 

56.67% 

58.22% 

1.388Å 

1.242Å 

H2 DiffAb 

DiffAb+Lap 

49.31% 

50.02% 

1.076Å 

1.058Å 

 L2 DiffAb 

DiffAb+Lap 

59.32% 

58.89% 

1.373Å 

1.131Å 

H3 DiffAb 

DiffAb+Lap 

26.78% 

28.82% 

3.597Å 

3.436Å 

 L3 DiffAb 

DiffAb+Lap 

46.47% 

49.84% 

1.627Å 

1.575Å 

Table 1: Evaluation of the generated antibody CDRs. 
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