6ZJ-09

# 植物生育過程における蒸散速度と水蒸気コンダクタンスの関係

野口 蓮太<sup>†</sup> 白木 厚司<sup>†</sup> 栗本 育三郎<sup>‡</sup> 千葉大学<sup>†</sup> 木更津工業高等専門学校<sup>‡</sup>

# 1. 緒言

高い品質の農作物を安定して供給するためには、温度・湿度・光などの環境を適切に管理し、生産計画通りに栽培をコントロールする必要がある。そのような環境を実現するために植物工場が注目されている。植物工場で果菜類の収量を増加させるには、光合成効率を高める必要がある[1]。

先行研究では, 光合成に寄与するパラメータ として水蒸気飽差(Vapor Pressure Deficit 以下 VPDと略す)に着目し、細霧によってVPDを制御す るシステムの研究開発と実証を行ってきた[2]. 連続細霧発生による気温・飽差制御システムに より, 夏季および冬季において植物の果実収量 が対象区と比較して 10~20%程度増加した. しか し、異なる地域、気象変動、栽培種や計画、品 質目標にシステムを対応させるには, 実際のフ ィールドにおいて実機テストを行う必要があり, 膨大な工数と費用が掛かる. 植物工場において システムを導入する前に,システムによる収量 の増加や品質の改善を予測するためには、制御 則や植物生理,環境応答,光合成最大化につい て解明しなければならない. しかし、細霧の発 生や蒸散による植物体周辺の VPD の変化、異なる 生育段階・周囲環境での植物生理応答はいまだ 解明されていない.

そこで本研究では、微気象環境において VPD および植物体と培地養液の供給・蒸散による重さの変化量を測定可能な IoT システムを開発した.また、VPD・重量のデータに葉面積のデータを加え、蒸散速度・水蒸気コンダクタンスを導出した.本研究により、蒸散と植物周囲の環境との関係が明らかになり、植物工場において作物の収量増加や高品質化が期待できる.

#### 2. VPD・重量測定 IoT システム

VPD とは、ある温度における飽和水蒸気圧と実

Relationship between Transpiration Rate and Vapor Conductance during Plant Growth

際に含まれている水蒸気圧の差のことで、その温度の葉面の潜在的蒸散速度の指標になる. VPDの計測には、Vaisala 社製 HMP155(測定温度範囲: $-80\sim60$ °C、湿度範囲: $0\sim100$ %、温度誤差: $\pm0.05$ kPa)を使用する. HMP155 は温度、湿度を測定し、湿度が飽和に近い高湿環境においても信頼性の高い計測を行う. また、筒でLEDからの熱を防ぎ、3m/s 以上の風をセンサに強制的に送ることで温度・湿度を測定し、VPDを導出する.

植物体および栽培トレイの重量測定に、Valcom 社製のひずみゲージ(零点の温度影響:  $\pm$  0.0125%R. C. /10  $^{\circ}$  八 出力の温度影響:  $\pm$  0.0080%R. C. /10  $^{\circ}$  八 温度補償範囲:  $-10\sim40$   $^{\circ}$  (結露,氷結不可),許容温度範囲:  $-30\sim70$   $^{\circ}$  (結露,氷結不可)) と,同社製のデジタルカラーパネルを用いる.栽培トレイの四隅にひずみゲージを配置して重量測定を行う.

センサデータ計測のコントローラとして、フタバ企画社製プログラマブル M2M ゲートウェイを用いる. IEEE 1888 という通信規格プロトコルによりセンサ情報を集約的に管理する. VPD・重量測定 IoT システムでは RS-485 通信により、センサ機器にコマンドを送りデータを取得し、そのデータをサーバ上に送信する.

#### 3. 破壊・非破壊検査による葉面積測定

葉面積の測定は、破壊検査と非破壊検査の2種類に分けて行う、破壊検査では、葉を一枚一枚切り離しスキャナで測定する、非破壊では、手振れ補正やタイムラプス機能を備えたGoProカメラで植物体を撮影し、3Dモデルを作成可能なソフトウェアのAgisoft 社製 Metashape を用いる図1(a)に破壊検査によって読み込んだ画像データを、図1(b)に非破壊検査によって構築した3Dモデルを示す。

#### 4. 微気象環境における植物体生育モデル

VPD の算出式として、Buck の式(1)を採用する [3]. ここで、 $T_d$ は乾球温度( $^{\circ}$ C)、 $e_{td}$ は乾球温度 の飽和水蒸気圧( $^{\circ}$ RPa)、 $^{\circ}$ RHは相対湿度( $^{\circ}$ 6)、 $^{\circ}$ Dが

<sup>†</sup> Renta Noguchi, Atsushi Shiraki, Chiba University

<sup>‡</sup> Ikusaburo Kurimoto, National Institute of Technology, Kisarazu College





(a) 非破壊検査によって読み込 んだ画像データ

(b) 構築した 3D モデル

図1 非破壊・破壊検査による葉面積測定法

VPD(kPa)である.

$$e_{td}(T_d) = 0.61365e^{\frac{17.502T_d}{240.97+T_d}}$$
 (1)

$$D = e_{td}(T_d) \left( 1 - \frac{RH}{100} \right)$$
 (2)

式(3)~式(5)に植物体生育数理モデルを示す. ここで、Eは蒸散速度( $mo1/m^2s$ )、mは蒸散による 水蒸気の減少量(mol/s), aは葉面積(m²),  $C_{ns}$ は 葉内部の水蒸気濃度(mol/mol),  $C_{va}$ は葉外部の水 蒸気濃度 (mo1/mo1),  $p_a$ は大気圧 (kPa),  $g_n$ は水 蒸気コンダクタンス (mol/m<sup>2</sup>s) である. コンダク タンスは気孔に対する気体の出入りのしやすさ を示している.

$$E = \frac{m}{a} \tag{3}$$

$$C_{vs} - C_{va} = \frac{D}{p_a} \tag{4}$$

$$E = \frac{m}{a}$$

$$C_{vs} - C_{va} = \frac{D}{p_a}$$

$$g_v = \frac{E}{C_{vs} - C_{va}}$$
(3)
$$(4)$$

#### 5. 実験方法

幅 2.0m, 奥行 2.0m, 高さ 2.8m の栽培室を木更 津工業高等専門学校地域共同テクノセンター内 第2ラボラトリにて構築する. 栽培室内は、空調 で室温をコントロールし、植物体上部に高さ調 整可能なLEDパネルを設置する. 栽培作物は、糖 度が高く品質の良いミニトマトの「千果」とす る. また、生長度の異なるミニトマトを対象に、 破壊・非破壊検査による葉面積測定を行う. 栽 培期間中, VPD・重量の計測を行い, データをサ ーバ上にアップロードする. 計測後, 計測した 葉面積と合わせてそれぞれ蒸散速度および水蒸 気コンダクタンスを導出する.

## 6. 結果と考察

葉面積の測定は2回に分け、1回目は6株の第 3,4花房開花時期の植物体を,2回目は5株の第 1,2 花房開花時期の植物体を対象として行われ た. 葉面積測定時における VPD, 蒸散による重さ の減少量, 葉面積, 蒸散速度, 水蒸気コンダク タンスを表1に示す.破壊・非破壊検査による葉 面積の測定結果を図2に示す. 図2より、非破壊 検査による葉面積の測定から破壊検査の葉面積

表1 測定結果と計算結果

|                                                       | 1st                   | 2nd                    |
|-------------------------------------------------------|-----------------------|------------------------|
| D(kPa)                                                | 1.71                  | 1.55                   |
| $m  (\mathrm{mmol/s})$                                | 3. 01                 | 1.18                   |
| a (m <sup>2</sup> )                                   | 1. 38                 | 6. $00 \times 10^{-1}$ |
| $E  (\mathrm{mmol/m^2s})$                             | 2. 19                 | 1.98                   |
| $oldsymbol{g_{v}} (	exttt{mol}/	exttt{m}^2	exttt{s})$ | $1.29 \times 10^{-1}$ | $1.29 \times 10^{-1}$  |

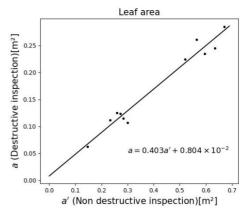



図2 非破壊・破壊検査による葉面積測定 のグラフ結果

を推定できる可能性が示唆された.表1より,生 長段階が異なることで葉面積や総蒸散量に違い が出るが,面積当たりの蒸散量や水蒸気コンダ クタンスにあまり違いが出ないことが明らかに なった. 水蒸気コンダクタンスが同じになった のは、VPD によって気孔の開閉具合を調整してい るためだと考えられる.

#### 7. 結言

本研究では、微気象環境において VPD、重量、 葉面積を測定し、蒸散速度・水蒸気コンダクタ ンスを導出した. 本研究の結果により、生長段 階の異なる植物生理特性について明らかになっ

#### 謝辞

本研究の一部は、公益財団法人、JSPS 科研費 JP22H0249 を受けて行われたことを示すとともに, 関係各位に謝意を示す.

## 参考文献

- [1] 古在豊樹:太陽光型植物工場 先進的植物工場のサス テナブル・デザイン.オーム社,(2009).
- [2] 浅野洋介, 渡邊孝一, 伊藤正英, 伊藤裕一, 栗本育 三郎: "太陽光型植物工場における細霧発生に伴う 変動むだ時間を補償する水蒸気飽差制御",第20回 計測自動制御学会システムインテグレーション部門 講演会, pp. 2345-2350, (2019).
- [3] LI-COR Inc.:LI-610 portable dew point generator instruction manual, (1991).