わずかな診断ドメインの情報を有効活用した 環境差に頑健な植物病害診断

野上郁文† 彌冨仁†

†法政大学 理工学部 応用情報工学科

概 要

これまで深層学習を用いた植物病害診断システムが 数多く提案され高い精度が報告されてきたが、学習時 と異なる環境で撮影された画像に対して大きく精度が 低下する、つまり本質的な診断能が得られていないこ とが報告されている.これは病害特徴がかすかで多様 であるのに対し、構図や病徴など環境による差(ドメ イン差)が大きいことが原因として挙げられる.この ドメイン差が大きい場合、本質的に未知の環境への高 精度な診断は困難である.本報告では実践的な診断モ デル構築のため、診断を行う圃場の少量のデータを入 手できる条件に問題を緩和し、これらの情報を効率的 に扱う手法を検討した.学習データと入手可能な少数 のテスト環境画像の特徴空間における分布を近づける 手法を提案し、実験により性能を評価した.

1 はじめに

畳み込みニューラルネットワークを用いた植物病害 診断システムは学習が容易でありながら非常に高い識 別能が報告されている [1]. しかし,多くの研究では学 習画像と評価画像が適切に分割されておらず,実デー タに基づいた多作物の解析から,不適切なデータ分割 は実質的な data leak を引き起こし,モデルの識別能は 本当の能力よりも大幅に低くなることが明らかになっ た [2]. そのためモデルの評価には,学習画像と評価 画像を入手した圃場が独立していていることが重要で ある.しかし,学習したデータと分布が大きく異なる 未知の圃場の画像に対して,高精度な診断を行うこと は極めて困難であり,未知のデータを網羅するような 多様性のある学習データを揃えることは容易ではない. そのため,診断先の圃場で撮影されたデータが少量で

[†]Department of Applied Informatics, Faculty of Science and Engineering, Hosei University, Tokyo, Japan あれば入手可能であるという仮定の下, 圃場に対して チューニングした診断システムを構築することが現実 的な次善策として考えられる.

一方,深層距離学習は特徴空間において各データの 特徴量を比較し,同一ラベルの特徴量間の距離を小さ くして異なるラベルの特徴量間の距離を大きくする制 約を設け,様々なタスクで優れた成果をあげている[3]. 本報告では,わずかなテスト環境画像を最大限に活用 するため,テスト環境画像を比較対象として学習に適 用する確率を指定可能にした距離学習に基づく実践的 な植物病害診断法を提案する.実験により,テスト環 境画像を距離学習に適用する確率と診断精度の関係を 検証し,従来の手法との比較により有用性を評価した.

2 提案手法

本研究では、少量のテスト環境画像を効率的に扱う ため、テスト環境画像を距離学習に組み込むかを決め る診断圃場選択確率 $p(\in [0,1])$ をハイパーパラメータ として設定する. (1)式に従って、cクラスの各種病害 の比較画像 $z_i(i \in \{1, \dots, c\})$ をわずかな診断圃場の画 像群 X_t または学習圃場の画像群 X_s から抽出する.

$$z_i = \begin{cases} x_t & \text{with probability } p, \text{ where } x_t \in X_t \\ x_s & \text{with probability } 1-p, \text{ where } x_s \in X_s \end{cases}$$
(1)

Hoffer らの手法 [3] を応用し、任意のクラス k に属 する入力画像 $x \in (X_s \cup X_t)$ とサンプルされた画像 z_1, z_2, \dots, z_c から獲得された特徴量間のユークリッド 距離を小さくする制約を従来の損失関数 L_{org} に追加 する.

$$L(x, z_1, \cdots, z_c) = -\log \frac{\exp\left[-||f(x) - f(z_k)||^2\right]}{\sum_{i=1}^c \exp\left[-||f(x) - f(z_i)||^2\right]} + L_{org} (2)$$

ここで, f は学習モデルのエンコーダー部分を示す. 診断圃場選択確率 p に高い値を設定することで,診断 圃場の画像が学習圃場に比べて少なくても比較対象に 選ばれる確率が顕著に向上するため,学習画像と診断 画像で近い特徴空間を得られることが期待できる.

Robust plant disease diagnosis for different environments by effectively using information from a few diagnostic domains

Takafumi NOGAMI[†]and Hitoshi IYATOMI[†]

[{]takafumi.nogami.7n@stu., iyatomi@}hosei.ac.jp

表	1:	デー	-タセッ	ト詳細	[枚]

ID_Name	学習用	評価用
00_Healthy (HE)	16,023	5,576
01_Powdery Mildew (PM)	7,764	1,898
02_Gray Mold (GM)	643	167
03_Anthracnose (ANT)	3,038	77
08_Downy Mildew (DM)	6,953	2,579
09_Corynespora Leaf Spot (CLS)	7,565	1,813
17_Gummy Stem Blight (GSB)	$1,\!483$	374
20_Bacterial Spot (BS)	4,362	$2,\!648$
22_Cucurbit Chlorotic Yellows Virus (CCYV)	5,969	179
23_Mosaic Diseases (MD)	26,861	$1,\!676$
24_Melon Yellow Spot Virus (MYSV)	$17,\!239$	1,004
Total	97,900	17,991

3 実験

3.1 データセットと前処理

使用したデータセットを表1に示す.10種の病害と 健全の計11種のきゅうりの葉表画像を用いた.学習 データと評価データは圃場が異なるように分割し,テ スト環境画像を用いた学習時は,各クラス10枚ずつラ ンダムに評価データから選び,学習のみに使用した.

学習時のデータ拡張として,面積の80%~100%の正 方領域をランダムにクロップして512×512にリサイズ した後,ランダムな角度での回転,水平反転を行った.

3.2 評価実験

本報告では EfficientNetV2-S [4] を ImageNet-1K [5] で事前学習したモデルを使用した.テスト環境画像を 学習に用いる場合,使用する画像を変更し、3回の実 験の平均値で評価した.提案手法に対する比較として, 学習データのみを用いて学習した識別器 (baseline),学 習データにテスト環境画像を追加して学習した識別器 (all-train),テスト環境画像を用いて baseline の全結合 層のみを fine-tuning した識別器 (fine-tuned) の 3 つの 学習戦略を評価した.

4 結果と考察

診断圃場選択確率 p に対する識別能の変化を図1に 示す. また,各手法と提案手法の診断能の比較を表2 に示す. 確率 p を増加させると識別能は向上し,p=0.7のとき F1-score は最大となり、77.2% であった. 提案手 法は多岐にわたる病害で診断性能が向上し、診断先の 情報を使わない baseline に対して 29.5%,単にそれら を学習した all-train より 12.3%, fine-tuned より 8.8% 向上した. 確率 p を高く設定することで、学習される 診断圃場と学習圃場の画像の組み合わせが増加し、こ れが診断精度向上の要因になったと推察される.

表 2: 各手法の識別結果 (F1-score [%])

ID_Name	baseline	all-train	fine-tuned	提案手法 $(p = 0.7)$
00_HE	77.7	76.0	78.3	79.5
01_PM	69.1	81.2	78.0	80.0
02_GM	3.8	62.5	67.6	85.4
03_ANT	34.6	44.6	35.0	65.0
08_{DM}	67.9	82.8	84.4	86.8
09_CLS	60.6	69.8	81.1	78.7
$17_{-}GSB$	30.5	60.6	64.0	79.2
20_BS	1.7	56.7	77.0	78.9
22_CCYV	61.6	68.5	59.7	79.3
23_MD	58.9	52.1	58.0	65.9
24_{MYSV}	58.1	58.7	69.5	70.0
macro-avg.	47.7	64.9	68.4	77.2
		(+17.2)	(+20.7)	(+29.5)

5 おわりに

わずかな診断圃場のデータを距離学習に適用する確 率を調整することで、診断性能の向上が確認された.

謝辞

本研究は,農林水産省委託プロジェクト研究 JP17935051 ならびに,内閣府官民研究開発投資拡大 プログラム PRISM の補助を受けた.

参考文献

- [1] Y. Toda and F. Okura, "How convolutional neural networks diagnose plant disease," *Plant Phenomics*, 2019.
- [2] S. Shibuya, Q. H. Cap, S. Nagasawa, S. Kagiwada, H. Uga, and H. Iyatomi, "Validation of prerequisites for correct performance evaluation of image-based plant disease diagnosis using reliable 221k images collected from actual fields," in *AI for Agriculture and Food Systems*, 2022.
- [3] E. Hoffer and N. Ailon, "Semi-supervised deep learning by metric embedding," arXiv preprint arXiv:1611.01449, 2016.
- [4] M. Tan and Q. Le, "Efficientnetv2: Smaller models and faster training," in *International conference on machine learning*. PMLR, 2021, pp. 10 096–10 106.
- [5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, "Imagenet: A large-scale hierarchical image database," in 2009 IEEE conference on computer vision and pattern recognition. Ieee, 2009, pp. 248–255.