Latent Diffusion Modelを用いた脳MR画像のドメイン調和の評価

池上宙† 西牧慧‡ 戸張柊也‡ 彌冨仁†

†法政大学理工学部 応用情報工学科

概 要

医療現場において,蓄積された脳 MR 画像の活用が 強く望まれている.診断支援を目的とした機械学習タ スクでは,拠点ごとの MR 画像撮像器や撮像プロトコ ルの違いが疾患に基づく特徴抽出の妨げになるドメイ ンシフトとよばれる課題が存在する.従来の画像その ものを対象とした GAN をベースとしたドメイン調和 手法は優れた効果が期待できる反面,ドメイン毎の学 習が必要であり,また大きな違いのある画像同士の調 和が困難である.近年注目されている生成技術は,様々 なタスクと親和性が高くドメイン調和へも応用が期待 できる.本研究ではテキストから画像生成が可能な潜 在拡散モデルを活用し脳 MR 画像の調和のための画像 変換について検討した.

1 はじめに

医療診断支援のために,機械学習モデルによる脳 MR 画像を使用した研究が行われている.近年の研究の大 規模化に伴い,撮影された機器や撮像プロトコルといっ た撮像拠点(ドメイン)毎の非生物学的な条件の差が モデルの性能に悪影響を及ぼしていることが明らかに なり [1],こうしたドメイン差を取り除く調和を行うこ とが求められている.

調和の方法には大きく分けて二つのアプローチがあ る.一つは撮像された脳 MR 画像を特定のタスクを実 行する過程で得られる低次元表現上でドメイン差を取 り除く方法である. Dinsdale らは反復学習構造の敵対 的ドメイン適応 [2] が,深層学習タスクの調和におけ るデータセットバイアス除去に適応でき,データセッ トによる偏りを調和した低次元表現を獲得できること を示した.このアプローチでは低次元表現を学習する ため学習コストが低いという利点があるが,目的に応 じて毎回モデルを設計する必要があり,組み込みの柔 軟性が低いことが課題として挙げられる.

もう一つは,生成モデルによるスタイル変換技術を 使用して画像を直接処理する方法である. Arai らの CycleGAN を用いた調和手法 [3] では,二つの異なる 機器で撮像された画像のうち一方にスタイル変換を行

shuya.tobari.7b@stu., iyatomi@}hosei.ac.jp

‡理工学研究科 応用情報工学専攻

い,もう片方の機器で撮像されたかのようにすること で,機器の違いによるドメイン差を取り除くことに成 功した.しかしこのような CycleGAN をベースにする 手法では,スタイル変換を行う際に調和するドメイン 差を1対1で学習を行う必要があり,3種類以上のド メインの調和に適応するためには,多くのモデルを用 意する必要がある.また,画像の形状を大きく変える ことができないため,ドメイン間にサイズや形状の違 いがある場合に調和が困難であった.

一方,指示文からの画像生成 (text-to-image) や編 集 (image-to-image) が可能な Latent Diffusion Model (LDM) [4] が近年注目されており,LDM を大規模デー タで学習させた Stable Diffusion は広く利用されてい る.本研究では,指示文を活用できる Stable Diffusion の image-to-image 変換を利用した新しい脳 MR 画像 のドメイン調和のための新しい方法を試作し評価した. Stable Diffusion モデルに対し,画像の構造をより忠実 に反映できる DreamBooth [5] を活用し脳 MR 画像の 追加学習を行い,入力された MR 画像が特定の撮像器 で撮像された画像であるように変換する.本手法は 1 つのモデルで無数のドメインに対応する調和技術の実 現が期待できる.

2 拡散モデルを用いた脳 MR 画像の調和

2.1 データセットと前処理

本研究では,軽度認知障害やアルツハイマーの研究 を目的として収集された3次元 MR 画像のデータセッ トである Alzheimer's Disease Neuro imaging Initiative (ADNI)¹²と3を使用した.ADNI2から1000枚, ADNI3から1861枚を学習に使用し,前処理として, 頭蓋骨除去,体積補正,角度補正を行った[6].前処理 を施した160×224×160の画像から冠状面をランダ ムに10スライス切り取り,解像度を1mm間隔にして 追加学習に用いた.

2.2 手法の詳細

本研究では、Stable Diffusion を用いた image to image によるドメイン調和を試作した. imgae to image は、入力画像に対してノイズを付与し、ノイズを除去する過程で、指定したプロンプトに適応するように変換する手法である. この手法を利用して、1 枚の脳 MR 画像を入力し、プロンプトで指定したデータセットに変換することで、ドメイン変換が行える可能性がある. この手法の利点は、3 種類以上のドメイン差の調和を

Evaluation of domain harmonization in Brain MR Images using a latent diffusion model

SÕRA IKĒGAMI[†], KEI NHISHIMAKI[‡], SHUYA TOBARI[‡] and HITOSHI IYATOMI[†]

Applied Informatics, Faculty of Science and Engineering, Hosei University 184-8584, Tokyo, Japan

[{]sora.ikegami.6u@stu., kei.nishimaki.6b@stu.,

¹https://adni.loni.usc.edu/

表 1: 生成時のパラメータ

パラメータ	値
seed	2500
$num_inference_step$	1000
guidance_scale	100
num_images_per_prompt	100

(a) ADNI2 から ADNI3 (b) ADNI3 から ADNI2 図 1: image to image の結果(左:入力,右:出力)

行う際に必要なモデルは,使用する画像のドメインを 学習したモデル1つとなり,先行研究の課題であった 学習コストを抑制することが期待できる.全てのデー タセットの脳 MR 画像を入力画像の対象としているた め,1つのモデルで様々なドメインに変換することが 可能である.脳 MR 画像は3次元画像であるが,本実 験では初期検討として,2次元スライスの画像に対し て変換した.

Stable Diffusion v-1.5 モデルに, DreamBooth で脳 MR 画像の追加学習したモデルを変換に用いた. モデ ルの学習の際に, instance prompt にデータセット名 を class prompt に"a brain MR image"を使用した.

追加学習にて構築したモデルを用いて, 脳 MR 画 像から任意の冠状面スライスを入力し, image to image にて,変換先データセットの名前("ADNI3"また は"ADNI2")をプロンプトにしてスタイル変換した. 画像を変換する際のパラメータの設定を表1に示す. guidance scale は入力画像とプロンプトの影響力を決 めるパラメータであり,値が大きいほど影響力が強ま る.デフォルト値は7.5であるが,予備実験の結果,本 実験では100 に設定した.

2.3 評価

変換した画像が, 脳の構造を失っていないかを確認 するため, ADNI3 から ADNI3 の同一ドメインによる 変換を行い, SSIM (Structural Similarity Index Measure) とピクセル間の平均的な差の二乗を計算した MSE (Mean Squared Error) の 2 つの指標で評価した.

3 実験と結果

図 1a に ADNI2 の画像を ADNI3 に変換した結果を, 図 1b に ADNI3 の画像を ADNI2 に変換した結果を示 す. 視覚的には形が崩れずに変換画像が生成された.

ADNI2 から ADNI3 及び ADNI3 から ADNI3 に変換した画像を図 2 に示す. また, 100 枚の変換した画像と元画像との評価スコアの平均 ± 標準偏差と最も良

図 2: ADNI3 から ADNI3 の変換(左:入力,右:出力) 表 2: スコア

	ADNI2 to ADNI3		ADNI3 to ADNI3		
	平均 (± 標準偏差)	最良	平均 (± 標準偏差)	最良	
SSIM	$0.581(\pm 0.046)$	0.652	$0.601(\pm 0.054)$	0.697	
MSE	$0.038(\pm 0.023)$	0.023	$0.031(\pm 0.012)$	0.018	

かったスコアを表 2 に示す.SSIM の値は 0.7 に達せ ず,MSE では 0.03 を上回る思わしくない結果が得ら れた.

4 考察とまとめ

図1と図2より、変換によって、定性的には脳の大 きな構造を失ってはいないように考えられるが、表2 より、SSIMの値が低かった.これは、指定したプロン プトの影響を強く受けて、学習画像の形状に変えてし まっているからだと考えられる.今回はguidance scale を100まで高めている.しかし、これによってプロン プトの影響が高くなりすぎてしまい、入力画像よりも 構造が大きく変わってしまった.今後の展望として、入 力画像とプロンプトの重みを変えて生成できるような 生成方法を確立し、脳の形状を変えないスタイル変換 を実現していく.

5 謝辞

本研究は JSPS 科研費 21K12656 の助成を受けた.

参考文献

- E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko, "Simultaneous deep transfer across domains and tasks," in *Proceedings* of the IEEE International Conference on Computer Vision (ICCV), December 2015.
- [2] X. Han, J. Jovicich, D. Salat, A. van der Kouwe, B. Quinn, S. Czanner, E. Busa, J. Pacheco, M. Albert, R. Killiany et al., "Reliability of mri-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer," *Neuroimage*, vol. 32, no. 1, pp. 180–194, 2006.
- [3] H. Arai, Y. Onga, K. Ikuta, Y. Chayama, H. Iyatomi, and K. Oishi, "Disease-oriented image embedding with pseudoscanner standardization for content-based image retrieval on 3d brain mri," *IEEE Access*, vol. 9, pp. 165 326–165 340, 2021.
- [4] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, "High-resolution image synthesis with latent diffusion models," in *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2022, pp. 10684–10695.
- [5] N. Ruiz, Y. Li, V. Jampani, Y. Pritch, M. Rubinstein, and K. Aberman, "Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation," in *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2023, pp. 22500–22510.
- [6] K. Nishimaki, K. Ikuta, S. Fujiyama, K. Oishi, and H. Iyatomi, "Pcss: Skull stripping with posture correction from 3d brain mri for diverse imaging environment," *IEEE Access*, 2023.