欠損画素復元ニューラルネットワークにおける 回帰モデルと分類モデルの性能評価

小椋 清孝[†] 橋口 仁哉[‡] 伊藤 信之[†] 岡山県立大学情報工学部[†] 岡山県立大学大学院情報系工学研究科[‡]

1. 背景

近年,4K/8K などの超高精細映像が一般的に使用されるようになり,これまで非圧縮で行われてきたデスクトップ PC などの映像送信側機器と、ディスプレイなどの映像受信側機器との間の伝送に,軽圧縮コーデックと呼ばれる低処理量・低遅延の圧縮技術が使用され始めている.

本研究室では、より低遅延な伝送圧縮手法と して、欠損画素復元手法[1]の研究を行っている. この手法では、映像の一部の画素を欠損させ、 非欠損画素のデータのみを伝送することで伝送 量の削減を行い、送られてきたデータから深層 学習モデルを用いて欠損画素値を推論し補間を 行うことで映像を復元する(図1).送信側で の圧縮処理がほぼ不要であることから、本手法 では送信側での遅延を大幅に削減できる.また、 このモデルは、回路化しリアルタイム伝送に使 用することを前提としているため、復元用ニュ ーラルネットワークは複雑なものを使用せず、 中間層が 1~2 層程度の浅いネットワークを用い る.これまでは回帰モデルを用いる手法につい て研究を進めてきた.

今回,これと異なるアプローチとして,この「画素値を求める」という問題を分類問題(8bit 色深度の場合 256 クラス)と考えた分類モデルに ついて検討した.分類モデルはモデル圧縮手法 として量子化を適用しやすく,回帰モデルと同 程度の復元性能であれば,より小型の回路とし て実装できる可能性がある.本研究の目的は, 欠損画素復元ニューラルネットワークを分類モ デルで構築し,従来の回帰モデルとの性能比較 を行うことである.2 画素×2 画素のブロックを 単位とする欠損パターンにおいて各色画面で1 画 素を欠損した 1/4 欠損画像の復元を対象とし,扱 う画像の色空間は RGB, 色深度は 8bit とする.

2. 方法

本研究で検討するモデルは、図2に示すように、

図1 欠損画素復元手法による伝送量削減

図2 欠損パターンと入力データウィンドウ

0 番目の色画面(R)の復元対象画素を中心にした 周囲3画素×3画素の範囲内(他の色画面ではこ れと同じ座標範囲内)の非欠損画素の画素値を 入力とし,欠損画素(R,G,B)を予測する全結合 型ニューラルネットワークである.回帰モデル は0~255の欠損画素値を出力する3出力モデル となり,分類モデルでは画素値をクラスとして 扱うため,256クラス×3が出力となる.ただし, 回帰モデルでは1個のネットワークでR,G,Bの3 画素を同時に推論する構成であるのに対し,回 帰モデルでは,R,G,Bごとに独立した推論ネット ワークを持つ構成である.ネットワークの中間

Performance Evaluation of Regression and Classification Model on Missing Pixel Restoration Neural Network Kiyotaka Komoku[†], Jinya Hashiguchi[‡] and Nobuyuki Itoh[†] [†]Faculty of Computer Science and Systems Engineering, Okayama prefectural University

[‡]Graduate School of Computer Science and Systems Engineering, Okayama prefectural University

層は、回帰モデルが1層200ニューロン、分類モ デルが2層各200ニューロンである.非線形関数 は両モデルとも ReLU を用い、学習時の評価関数 は回帰モデルが平均二乗誤差、分類モデルがソ フトマックスクロスエントロピーである.学習 回数は、回帰モデルが100epoch、分類モデルが 1000epochである.

学習で用いる画像は PASCAL VOC データセット [2]を使用し、訓練用に 200 枚、テスト用に 50 枚 を用いた.これらの画像はおおよそ 300 画素× 500 画素程度のサイズである.

学習済みモデルの評価は,50 枚のテスト画像 を欠損・復元させた際の PSNR(Peak Signal to Noise Ratio)の平均値で行った.

3. 結果と考察

学習済みの各モデルを用いて,50 枚のテスト 画像を欠損・復元した際の PSNR の統計量を表1 に示す. 平均 PSNR は分類モデルが53.12dB,回帰 モデルが53.48dB となり,回帰モデルのほうが 0.36dB 上回る結果となった.一方,標準偏差は, それぞれ2.02dB,2.91dB となり,分類モデルの 方のばらつきが小さくなった.50 枚の PSNR を個 別に比較したところ,分類モデルの方が高い PSNR の画像もあり,一律に回帰モデルの性能が 高いとはいえない結果となった.

ここで、分類モデルで復元性能が最も高かっ た画像(2007 003565. jpg)と最も低かった画像 (2007_003101. jpg)について,予測誤差の度数分 布を調べた(図4). 横軸は予測誤差の絶対値, 縦軸は予測対象の全欠損画素数に対する割合(%) であり、RGB 各面の予測誤差分布を示している. 予測誤差0の部分が正解値を予測した割合となる. この図より、正解値を外した場合でもその近傍 値が予測されていることがわかる. 分類モデル では出力の 0~255 のクラスはそれぞれ独立であ り、学習時に予測が外れた場合のペナルティは 予測値から近くても遠くても同等である.これ より,予測が外れた場合に全く正解値とは無関 係のクラスばかりが予測される可能性も考えら れたが、この結果を見ると、近接クラス間は類 似であるというクラス間の関係性が学習により 構築されていると考えられる.

図5は、同じ画像について回帰モデルでの予測 誤差分布を調べた結果である.図4(a)と図5(a) を比較すると、図5(a)の回帰モデルの方が正解 値が多く、復元性能が高いことがわかる.一方、 図4(b)と図5(b)では同じような分布となってい る.PSNRの大小の違いによる誤差分布の傾向が 図4と図5で異なるが、今回の分類モデルは学習 終了時も学習曲線に若干の傾きがあり、十分に

表1	各モデルで復元したテスト画像 50 枚の
	PSNR の統計量[dB]

学習が収束したと言い切れない状態のため、こ れが分類モデルと回帰モデルの本質的な違いか どうかについては現時点では不明であるが、も しそうであれば、両モデルでは異なるアルゴリ ズムで予測値を推論しているということも考え られる.

4. まとめ

欠損画素復元ニューラルネットワークとして 分類モデルを構築し,回帰モデルとの比較を行 った.50枚のテスト画像を用いた評価では,回 帰モデルが平均 PSNRで0.36dB 高いという結果と なったが,標準偏差は分類モデルの方が0.89dB 小さくばらつきが少ないといいう結果となった. 今後は,分類モデルの学習の高速化及びさらに 詳細な回帰モデルとの比較・評価を行う予定で ある.

参考文献

- [1]橋口, "ニューラルネットワークを用いた欠損 画素復元回路の設計", 2022 年度電気・情報 関連学会中国支部連合大会, R22-24-08, 2022
- [2] M. Everingham et.al., "The PASCAL Visual Object Classes (VOC) Challenge", Int. J. Computer Vision, 88(2), 303-338, 2010