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I. Introduction 
A real-time monitoring and time-series collecting 

system often encounters disruption due to common 

issues such as hardware/software failure or network 

disconnection, leading to the problem of missing or 

time-delayed data. The performance of online time-

series prediction models could degrade due to inputs 

that have missing values. A simple conventional 

approach to solve this problem is to replace the missing 

values with zeros or interpolate them. More recent 

studies utilized neural network to perform complex 

interpolation [1]. A new approach leveraging time-

delayed complete data to enhance the time-series 

representation learning is introduced as enhanced 

representation learning (ERL), which demonstrated 

efficacy against previous methods to address this 

missing value problem [2]. The main idea is to learn 

representation alignment of complete and incomplete 

data using the concept of contrastive learning. Given a 

prediction model consisting of a representation block 

(encoder) and a prediction block (decoder), a training 

pipeline of ERL consists of three steps (as visualized in 

Fig. 1a): (1) learn the representation of complete data, 

(2) train the encoder 𝑓𝑎
𝑟  to align the representation 

vectors of complete and incomplete data, (3) use inputs 

with missing values to finetune the decoder 𝑓𝑐
𝑝

 to 

obtain 𝑓𝑎
𝑝
. 

In this paper, we investigate the technical extensions 

of ERL to enhance its performance while reducing the 

training time and memory consumption. Firstly, we 

merge steps (2) and (3) to force the prediction model to 

achieve a global optimal and reduce the training time.  

Secondly, we investigate the effect of different mini-

batch sizes in learning representation alignment. Using 

less the batch-size directly reduces the memory 

consumption during training phase.  

 

II. Methodology 
We consider time-delayed complete multivariate time-

series (MTS) data 𝑋𝑐  and corresponding incomplete 

MTS 𝑋𝑚 as inputs for MTS prediction models, where 

𝑋𝑐  and 𝑋𝑚 ∈ ℝ𝐻×𝑁; 𝐻 and 𝑁 are the number of time 

slots and the number of variables, respectively. 𝑌 and 

𝑌̂ ∈ ℝ𝐿×𝑁 are truth and predicted values, where 𝐿 is the 

number of prediction time slots. 

1. ERL 

We briefly summarize the main idea of ERL [2]. This 

method originally consists of three-step training. 

• Step 1: train 𝑓𝑐
𝑟: 𝑋𝑐 → 𝑅𝑐  and 𝑓𝑐

𝑝
: 𝑅𝑐 → 𝑌̂  using 

mean square error loss (MSE), i.e., ℒ𝑀𝑆𝐸(𝑌, 𝑌̂). 

• Step 2: train 𝑓𝑎
𝑝
: 𝑋𝑎 → 𝑅𝑎  so that 𝑓𝑎

𝑟(𝑋𝑎)  is 

similar to 𝑓𝑐
𝑟(𝑋𝑐), using a loss function as follows:   

ℒ𝑎𝑙𝑖𝑔𝑛(𝑅𝑎, 𝑅𝑐) = ℒ𝑑𝑖𝑠(𝑅𝑎 , 𝑅𝑐) + 𝛼ℒ𝐶𝐿(𝑅𝑎 , 𝑅𝑐), 

where ℒ𝑑𝑖𝑠 and ℒ𝐶𝐿 are a distance-based alignment loss 

and a contrastive learning-based alignment loss, 

respectively; 0 < 𝛼 ≤ 1  is a hyper-parameter. 

Distance-based alignment loss, a loss to force 𝑅𝑎 and 

𝑅𝑐 to be close to each other, is computed as follows:  

ℒ𝑑𝑖𝑠(𝑅𝑎, 𝑅𝑐) = ||𝑅𝑎 − 𝑅𝑐||2.  Besides, contrastive 

learning-based alignment loss accounts for sample 

differences in a mini-batch, where we need to set up 

positive and negative pairs. For simplicity, we want 𝑅𝑎
𝑖  

to be close as possible to 𝑅𝑐
𝑖  (𝑖 is the index in the mini-

batch) so that they are a positive pair. By contrast, 𝑅𝑎
𝑖  

and 𝑅𝑎
𝑗

 or 𝑅𝑐
𝑗
 (𝑖 ≠ 𝑗 ) are negative pairs. The loss is 

computed as follows:    

ℒ𝐶𝐿(𝑅𝑎, 𝑅𝑐)

= − log
exp(𝑅𝑎

𝑖 , 𝑅𝑐
𝑖)

∑ (exp(𝑅𝑎
𝑖 , 𝑅𝑎

𝑗
) + exp(𝑅𝑎

𝑖 , 𝑅𝑐
𝑗
))𝑗

 

• Step 3: train 𝑓𝑎
𝑝
: 𝑅𝑎 → 𝑌̂ with weight initialization 

of 𝑓𝑐
𝑝
 by the MSE loss. 

 

2. Our extension of ERL 

We perform steps 2 and 3 simultaneously to force the 

prediction model to achieve global optimal. Fig. 1b 

presents an overview of our extension for ERL 

(denoted as Ext_ERL) consisting of two-step training. 

 
(a) Original training steps of ERL. 

 
(b) Our proposed training steps for Ext_ERL. 

Figure 1. Training steps of ERL and our Ext_ERL. 

 

Complete 
data

Representation 
block (encoder)

Prediction
result

Incomplete 
data

Representation 
block (encoder)

Prediction block 

(decoder)

Prediction
result

Complete 
data

Representation 
block (encoder)

Prediction block 

(decoder)Step 1

Incomplete 
data

Representation 
block (encoder)

Representation 
alignment

Step 2

Step 3

Complete 
data

Representation 
block (encoder)

Prediction
result

Incomplete 
data

Representation 
block (encoder)

Prediction block 

(decoder)

Representation alignment

Prediction
result

Complete 
data

Representation 
block (encoder)

Prediction block 

(decoder)Step 1

Step 2

Use parameters to initialize

Copyright     2024 Information Processing Society of Japan.
All Rights Reserved.1-127

4A-06

情報処理学会第86回全国大会



Step 1 in our Ext_ERL is the same as in ERL. In the 

step 2, we use the loss function below to train 𝑓𝑎
𝑟 and 

𝑓𝑎
𝑝
: 

ℒ(𝑅𝑎 , 𝑅𝑐) = ℒ𝑑𝑖𝑠(𝑅𝑎, 𝑅𝑐) + 𝛼ℒ𝐶𝐿(𝑅𝑎 , 𝑅𝑐)

+ 𝛽ℒ𝑀𝑆𝐸(𝑌, 𝑌̂) 

where 𝛼 and 𝛽 are hyper-parameters. 

III. Experiments 

1. Experimental settings 

We evaluated Ext_ERL on the PeMs-Bay dataset. We 

chronologically divided the dataset into training, 

validation, and testing sets with a ratio of 6:2:2. The 

model looked back 24 hours to predict 12 hours ahead. 

The granularity of this dataset is 5-minute interval. We 

use the Informer [3] as prediction model (same as [2]). 

The settings of Informer are also the same as [2]. 𝛼 and 

𝛽  are both set to 1. The mini-batch size is 16. We 

performed our experiments on a Linux server with a 

Tesla P100 16Gb GPU. 

Originally, the PeMs-Bay dataset did not have 

missing values. We simply simulated for the missing 

value that randomly occurs in the dataset with a pre-

defined missing ratio, and we made this to happen 

simultaneously to all variables. 

We compared our Ext_ERL to the original ERL and 

the top baselines in [2], which are the Informer* and the 

Informer’. Informer is not originally designed to handle 

the missing value. Therefore, Informer* and Informer’ 

are Informers in which zero-imputation and linear-

imputation were applied to the input before going into 

the Informers, respectively. 

 

2. Results 

Table 1 presents the model prediction errors with 

incomplete input data. The overall missing ratio are 0.2, 

0.5 and 0.8. The error in each experiment is the average 

error value of three executions with different seeds. We 

observed that Ext_ERL achieves a better performance 

than ERL in several cases. Ext_ERL performs better 

than Informer’ and Informer* in most of cases. 

Ext_ERL seems to perform worse compared to ERL 

when we increase the missing ratio. The training time 

of Ext_ERL is 40% faster than ERL (shown in Table 2).  

3. Effect of different mini-batch sizes 

We evaluated the effect of different mini-batch sizes by 

increasing the size in {4, 8, 16, 24}. Due to memory 

limitation, we could not use larger batch-sizes. 

 Fig. 2 presents the RMSE values of Ext_ERL in 

this experiment. With the missing ratio of 0.2, 

increasing the batch-size to 16 and 24 achieves better 

performance. With the missing ratio of 0.5 and 0.8, 

using small batch-sizes (i.e., 4 and 8 respectively), 

however, performs better than using larger ones. 

 

IV. Conclusion and future work 

In this paper, we conducted extensive experiments for 

ERL to address time-delayed multivariate time-series 

prediction. We firstly reduced the number of training 

steps in ERL by merging steps 2 and 3. Results showed 

that Ext_ERL achieved better performance than ERL in 

several cases while reducing the training time. 

Secondly, we evaluated the effect of different mini-

batch sizes in representation alignment learning based 

on contrastive learning. We will consider complex 

definitions of positive and negative pairs as future work. 
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Table 1. Prediction errors on the testing set of incomplete data. 
Missing ratio 0.2 0.5 0.8 

Method/Error RMSE MAE RMSE MAE RMSE MAE 

Informer’ 5.83 3.08 6.02 3.20 6.48 3.38 

Informer* 5.72 3.00 6.07 3.18 6.47 3.36 

ERL 5.68 2.96 5.97 3.12 6.43 3.30 

Ext_ERL 
5.63 2.91 6.08 3.11 6.47 3.33 

 

 
Figure 2. Performance of Ext_ERL with varying the batch-size. 

 

5.73 5.76
5.63 5.63

6.07 6.14 6.08 6.08

6.44
6.33

6.47 6.49

5.5

5.7

5.9

6.1

6.3

6.5

6.7

4 8 16 24

R
M

SE

Batch size

Missing ratio = 0.2 Missing ratio = 0.5
Missing ratio = 0.8

Table 2. Comparison of training time between ERL and Ext_ERL. 
 Training time (minutes) 

ERL 53 

Ext_ERL 33 
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