Oo0oobgoobono 150016
gogobobooboonb ogd

Implementation of FIFO Buffer Using Cache Memory

KHAIRUDDIN BIN KHALID' and KIYOFUMI TANAKA?-ft

Conventional caches are not always made use of in some familiar applications because
of no locality in memory accesses. To make use of a large cache memory space in a today’s
processor, we propose a built-in FIFO buffer based on a concept of reconfigurable caches where
cache memory space is divided into several partitions dynamically. The FIFO mechanism can
be implemented with small additional hardware, avoid memory fragmentation, and improve

performance of data accesses.

1. Introduction

Current high performance general-purpose
processors are used for a variety of applica-
tion domains, including scientific, engineering,
transaction processing, and decision support.
Several quantities characterizations have shown
that applications from different domains ex-
hibit different characteristics?). As computer
systems are used increasingly in wide variety
of applications, a “one-size-fits-all” design phi-
losophy will be inadequate. For example, the
use of large caches is a common trend across
general-purpose systems, sometimes consuming
up to 80% of the total transistor budget and up
to 50% of the die area?). While large caches are
effective for a variety of conventional workloads,
they are often ineffective for media processing
applications because of the streaming nature of
the data accesses and the large working sets in
these applications.

In response to this observation Ranganathan
et. al®) proposed a new caches organization
called reconfigurable caches. Reconfigurable
caches allow the on-chip SRAM to be dynam-
ically divided into different partitions that can
be assigned to different activities.

When a processor sequentially accesses many
data which are located at a certain interval in a
memory, those data are brought into the caches
and put at a certain interval, which means that
many other data that are around the accessed
data and would not be touched are also inserted
into the cache. This kind of layout wastes mem-

t School of Information Science, Japan Advanced In-
stitute of Science and Technology

11 “Information and Systems”, PRESTO, Japan Sci-
ence and Technology Corporation(JST)

ory space and processing time in conventional
caches.

In order to prevent the above situation from
occurring, it is effective for a processor to have
a built-in FIFO buffer and use it instead of the
cache when many non-contiguous data are ac-
cessed. In this study, we are focusing on ap-
plication of reconfigurable caches to a FIFO
buffer. By implementing one partition in re-
configurable caches as a FIFO buffer, we can
avoid fragmentation in caches and improve per-
formance of memory accesses.

2. Conventional Caches

Cache memory is a part of memory hierar-
chy, that is, an intermediate memory between
a processor core and the main memory. To
take advantage of a feature of spatial locality
which various programs have, memory words
are grouped into small blocks or lines. When
a caches miss occurs, the processor will then
fetch a block including the missing data or in-
struction from the next level cache or external
memory. The block consists of multiple words
that are adjacent and carry a high probabil-
ity of being needed shortly. The cache memory
holds such blocks and the contents of it are thus
copies of a set of main memory blocks.

2.1 Data Placement Scheme

On block placement in a cache, the simplest
scheme is to place a memory block in exactly
one location determined uniquely by the mem-
ory address of the block. This kind of scheme
is called direct mapped. The problem with the
scheme is that it lacks flexibility, that is two or
more blocks easily conflict with each other for
the location.

On the other hand, in fully associative

0830

研究会Temp

研究会Temp

研究会Temp

研究会Temp

研究会Temp
計算機アーキテクチャ

研究会Temp
150－16

研究会Temp
（２００２． １１． ２８）

研究会Temp
－83－

| TAG [INDEX|OFFSET|
Status Tag Status Tag
DATA DATA
! Data Out
I Select
Compare
Hit/Miss

Fig.1 2-way set associative cache.

scheme, a block can be associated with any en-
try in the cache, giving more flexibility. How-
ever, to find a given block in fully associa-
tive cache, all the entries in the cache must be
searched because a block can be placed in any
entry regardless of the address. Another prob-
lem with fully associative cache is that much
more hardware is needed, significantly increases
the access time and hardware costs.

The middle range of designs between direct
mapped and fully associative is set associative.
Fig.1 depicts the structure of a single-ported
2-way set associative cache. In a N-way set as-
sociative cache, there are N data and tag arrays
and each of N arrays is referred to as a way. A
group consisting of entries with an index is re-
ferred as a set. Therefore, a set contains N en-
tries in N-way set associative. A block can be
placed in any entry of the corresponding set.
The set associative caches represent moderate
access time and hardware costs®.

2.2 Addressing

On the addressing method, the lowest portion
of an address, called offset in a block, is used
to select an accessed data (byte, word, etc.) in
a memory block. The middle portion of an ad-
dress, index field, is used to select a caches entry
consisting of a data and tag. A tag field is used
to distinguish between blocks with a different
address but the same index field and it is the
upper portion of an address.

The tag field of an input address is sent to

the comparator(s) in the cache mechanism to
determine if there is a match between the tag
value and any of the tags read from the tag
array. If there is a match, a hit signal is sent
to the output and the data is valid to be read.
If there is no hit, a miss signal is being sent
until the missing block is read out from the next
hierarchical cache memory or external memory
and filled into the corresponding cache entry.

It is a common trend today that processors
have large caches. While some applications use
large caches effectively, some don’t because of
no temporal or spatial locality®). To fully utilize
large caches, Ranganathan et. al®) proposed
reconfigurable caches described in the next sec-
tion.

3. Reconfigurable Caches

Paper®) showed that by enabling caches to

be divided into multiple partitions dynamically
and use those partitions as lookup tables for
instruction reuse, there are 1.04X to 1.20X of
improvements in media processing benchmarks.
They called this kind of design technique re-
configurable caches. There are several possi-
ble applications for reconfigurable caches such
as lookup tables for value prediction, memo-
rization, instruction reuse, compiler or compi-
lation controlled memory and prefetched data
partition. There is several design aspects that
must be considered on designing reconfigurable
caches and our option.

3.1 Partitioning

The key challenge in designing a reconfig-
urable cache is to devise mechanism for divid-
ing the cache memory into different partitions.
Our primary design exploits set-associativity in
conventional cache organizations. The recon-
figurable cache builds on the set-associativity in
natural way, as depicted conceptually in Fig. 2.
That is, we divide the reconfigurable cache into
partitions at the granulity of the ways of the
set-associative cache as in Fig.2. The example

2-Way Cache

|::> Partition 1 Partition 2

2-Way Set Associative Cache Reconfigurable Cache with 2 Partitions

Fig.2 Conceptual partitioning in 2-way set
associative.

0 840

研究会Temp

研究会Temp

研究会Temp

研究会Temp

研究会Temp
－84－

Address In

Address In B

TAG INDEX | OFFSET

TAG

NDEX| OFFSET]

Partition 2

Partition 1 DATA)

Data Out
Compare ‘ Select ::>
Hit/Miss
E Data Out
Select I::>

Hit/Miss

Fig.3 Reconfigurable cache based on 2-way set
associative.

of exploiting the set-associativity for a reconfig-
urable cache is shown in Fig. 3

In our implementation we are going to mod-
ify conventional 2-way set associative cache and
make it accommodate general feature of a cache
in one way and an effect of a FIFO buffer in an-
other way.

3.2 Detection

A reconfigurable cache needs to know when
it should act as a normal cache with 2-way as-
sociative, and when it should act as a recon-
figurable cache with one partition for a normal
cache and another partition for a special use.
To make this change possible, we are going to
provide a special register whose value invokes
the reconfiguration. This special register is set
by execution of a special instructions. That is,
applications themselves control the configura-
tion of the cache according to their decision.
Resetting the register restores the cache config-
uration to the normal cache mode.

3.3 Addressing

In a conventional cache, the middle portion
of the memory address (index field) is used to
select a set that should be searched. The spec-
ified set by the index consists of data, tag, and
status (validity, etc.) for each way. Each tag
is compared with the upper portion of the ad-
dress (tag field) to determine whether the entry
corresponds to the memory address.

Addressing in a reconfigurable cache differs
from that of a conventional one. The method
depends on what purpose the special partitions
are used for. For example, when a data cache

is divided several partitions and one of the par-
titions is used as a branch or value prediction
buffer, the partition would be indexed by a part
of an instruction address instead of a data ad-
dress.

Such use of a partition forces the cache or-
ganization to have an extra input port of ad-
dresses and also an extra output port since two
or more partitions might be accessed simulta-
neously. We propose an application of a recon-
figurable cache, a FIFO buffer, that does not
require any extra ports. The structure is de-
scribed in detail in the next section.

3.4 Data Consistency

In one of conventional caches, when a write
occurs, the new value is written only to the
block in the cache. The modified block is writ-
ten to the next level cache or main memory
when it is replaced. This kind of scheme is
called write-back.

In a reconfigurable cache, after a partition
moves to a special purpose, it is necessary to
write back the modified blocks belonging to the
partition in the main memory before the en-
tries of the blocks are overwritten by new data.
There are two options, cache scrubbing and lazy
transitioning®. The former performs all write-
back operations on the partition when the re-
configuration occurs. The latter performs a
write-back operation about a block only when
the corresponding entry is being overwritten.
We use the latter scheme since there is little
difference between the scheme and that of con-
ventional caches, which means it does not re-
quire much extra hardware.

4. An Application: FIFO Buffer

In general, instruction accesses by a program
execution show a tendency of locality enough
to have the benefit of an instruction cache. On
the other hand, a data cache of the general
cache structure has inefficiency against process-
ing that exhibits no locality in data accesses.
Therefore, we give the data cache the ability to
switch into multiple partitions.

4.1 Motivation and Basic Policy

We are now focusing on an example, that is
accesses to data of a certain interval in mem-
ory sequentially, where each data is accessed
only once. Although they are sequential they
are not continuous resulting in fragmentation in

0 8500

研究会Temp

研究会Temp

研究会Temp

研究会Temp

研究会Temp
－85－

conventional cache memory. The fragmentation
is wasting not only space in cache memory but
also time to transport data between the cache
and external memory, since the cache mecha-
nism assumes a block which includes data that
being not accessed. This kind of data accesses
can be found often in, for example, database
processing. The use of a smaller size of block
is one solution to the problem. However it re-
quires much more tag and state memory spaces
than that of the usual size of block and cannot
receive benefit from space locality.

As for such accesses to sequential data of a
certain interval, a memory address of each data
is not important for the intention of a program.
Only the fact of regular injections of sequen-
tial data into the execution of memory access
instructions is essential. In order to prevent
the above inefficiency of the fragmentation in
the cache from occurring, it is effective to use
a FIFO buffer instead of a conventional data
cache. A characteristic of first-in and first-out
is suitable for the sequential accesses taken up
now.

Here, the size of a FIFO buffer needs to be
large enough to deal with a large data set.
Equipping a processor with a large FIFO buffer
increases the chip size and costs. Therefore, we
implement a FIFO buffer within a partition in
reconfigurable cache. This strategy is based on
the observation that a partition, or way, in a
cache is not small, 4 Kbytes or more in today’s
microprocessors, and that the cache is not used
effectively anyway for the memory accesses in
question.

4.2 Structure of Partitions

We build a reconfigurable cache as a FIFO
buffer based on a 2-way set associative cache.
In our reconfigurable cache, when the value of
the special register for the cache configuration
is zero, the cache functions as a 2-way set asso-
ciative cache. When the cache is reconfigured,
that is when the register is set, one partition is
used as general-purpose data cache and we use
the other partition as a FIFO buffer. Fig.4
shows the configuration after it is configured as
multiple partitions.

The left partition in the figure functions as
a direct mapped data cache and the right one
as a FIFO buffer. Which partition is accessed
from a memory access instruction depends on

the physical memory address. For example, the
highest bits in an address decide it as in the
figure. This means that it is necessary for a
compiler or linker to relocate data sets being
accessed via the FIFO appropriately and for
a virtual memory mechanism to translate the
virtual addresses to the corresponding physical
addresses. Since both partitions are accessed as
data accesses, only a partition results in giving
a data to a requesting instruction at a time. In
other words, there is no chance for both parti-
tions to be needed at the same time. Therefore,
our reconfigurable cache has a single output
port common between two partitions, whereas
the original reconfigurable caches depicted in
Fig.3 must have the same number of output
ports as partitions.

An entry to be read in the FIFO is indicated
by a read counter. Similarly, an entry to be
written is indicated by a write counter. These
counters are automatically increased by one at
read or write, respectively. When the value of
the read counter is equal to that of the write
counter, no valid values exist in the FIFO and a
miss signal is asserted. Consequently, the FIFO
buffer does not need to be indexed by any ad-
dress other than the two counters. This means
that an extra address input port that the orig-
inal reconfigurable caches have is not required
for our FIFO usage. In addition, the structure
does not need any tag matching for searching,
which can simplify the hardware of our recon-
figurable cache.

4.3 Cooperation with Bus Transfer

Mechanism

Memory access instructions (load instruc-
tions) take a data out of a FIFO buffer, while
data read from external memory are to be in-
serted into the FIFO buffer. Although our
FIFO buffer aims chiefly at avoiding fragmenta-
tion in conventional cache, the mechanism ex-
hibits its power only when it absorbs a gap be-
tween the speed of execution of load instruc-
tions and that of accesses to external memory.
One of options is the introduction of a prefetch
instruction. Execution of the instruction can
inject data to be requested into the FIFO in
advance. However, the execution of the instruc-
tion passes through pipeline resources in the
processor and therefore leads to overheads that
cannot be neglected.

0 860

研究会Temp

研究会Temp

研究会Temp

研究会Temp

研究会Temp
－86－

‘SELE(_T ‘ TAG ‘INDEX ‘OFFSEI"

Read Counter H| AT
Write Counter F»

— \
1 1 ‘ Select I::>
Compare Data Out

Normal Caches

Hit/Miss
FIFO Buffer

Fig.4 Reconfigurable cache as FIFO buffer.

Some support mechanism should be provided
to make full use of the FIFO buffer. In
this study, we assume that there is one of
DMA mechanisms outside the processor, called
“stride data transfer (SDT)”%), which can co-
operate with the FIFO buffer in the processor.
We describe the outline of SDT and relation-
ship between the SDT and the FIFO buffer in
this subsection.

One of typical applications which show no
locality in data access is database processing.
When a column with an attribute in a relation
table is looked over, data located at the inter-
val that corresponds to the size of a tuple are
accessed sequentially. DRAM is constructed in
rectangle array of memory cells. Data in the
array is accessed by indicating row and column
addresses. After the cells in a row addressed
by the row address are latched, the target data
is specified by the column address and output.
A memory controller divides a memory address
from a processor into the row and column ad-
dress and send them to DRAM one by one.
Although general memory controllers can only
read and write continuous bits in a row in a
burst mode, the DRAM structure can let the
memory controller access any bits, for example,
bits at a fixed interval, in a row quickly only by
receiving corresponding column addresses. The
memory controller has only to know the interval
and the number of data to generate the column
addresses.

The procedure of the stride data accesses is
as follows.

(1) Before a program invokes the SDT mech-
anism, the execution of instructions sets
the address space identifier, interval and

the number of data to the registers in the
memory controller.

(2) When the execution of a load instruction
for the target data set meets a FIFO miss,
the processor issues a memory request to
the memory controller.

(3) When the memory controller finds the
matching of the physical address con-
cerned and the value of the address space
identifier set in advance, it dispatches a
row and column addresses to DRAM and
sends a data read from DRAM to the
processor. After that, it generates the
next column address by adding the previ-
ous column address and the value of the
interval, dispatches it to DRAM, decre-
ments the value of the register indicat-
ing the number of data, and sends a data
read to the processor. This process is re-
peated unless the column address exceeds
the size of a row or the number of data
gets zero.

(4) Every time the processor receives a data,
the data is inserted into the FIFO and the
write counter is incremented.

It is possible for FIFO misses to occur when

a load instruction is executed before the corre-

sponding data arrives at the FIFO. The proces-

sor recognizes this as a FIFO miss and issues a

request to the memory controller. The mem-

ory controller discards this request when the
address is within the ongoing SDT. The mem-
ory controller suspends the transfer when the
calculated column address exceeds the row size.

Then the processor restarts the step (2) and the

following steps after all data in the FIFO are

consumed

0870

研究会Temp

研究会Temp

研究会Temp

研究会Temp

研究会Temp
－87－

val Tag __ Data

Physical Memory

-—

Conventional Cache
—

«—

Valid
Read Counter -
Wite Counter—— -

FIFO buffer

Fig.5 Efficient use of cache memory space by FIFO
against stride data.

By the SDT mechanisms, the FIFO based on
cache memory is filled efficiently and speedily
as in Fig. 5.

5. Conclusion

While the use of large caches is a common
trend across general-purpose systems, it is often
ineffective for some of applications, for example,
media processing and database processing since
they might not exhibit any locality in the data
accesses.

Reconfigurable caches have already been pro-
posed for the effective use of cache memory
space when the conventional caches could not
find any locality. In this paper, we proposed an
application of reconfigurable caches where one
partition is used as a built-in FIFO buffer and
described the way of controlling it. The mech-
anism of the FIFO can be implemented with
small additional hardware, prevent fragmenta-
tion in a cache memory from occurring, and
improve performance of memory accesses. And
furthermore, it becomes more effective when it
cooperates with a DMA mechanism such as the
SDT.

We have completed design of a basic CPU
core using VHDL. The integer unit is based
on the MIPS instruction set architecture” and
each instruction is executed through a 5-stage
(IF, ID, EX, MEM, WB) pipeline. This CPU
core includes an instruction cache and data
cache each of which is 2-way set associative.
The data dache is now based on simple write-
back. We will reorganize the data cache as a
reconfigurable cache and evaluate the effective-
ness in the next step.

Acknowledgments

In this study, we are using tools provided

by university programs of Synopsys, Inc. and
Mentor Graphics Corp. We would like to thank
both of them.

0 88U

References

1) K. Diendorf and P. K. Dubey, “How Multime-
dia Workloads will Change Processor Design.”
IEEE Computer, Vol.30, No.9, pp.43-45, 1997.

2) J.Henessy, “The Future of System Research.”
IEEE Computer, Vol.32, No.8, pp.27-33, 1999.

3) Parthasarathy Ranganathan, Sarita Adve and
Norman P. Jouppi, “Reconfigurable Caches
and Their Application to Media Processing.”
Proc. of ISCA, pp.214-224, 2000.

4) David A. Patterson and John L. Hennessy,
“Computer Organization & Design: The Hard-
ware/Software Interface.” Morgan Kaufmann
Pub., 1997.

5) Parthasary Ranganathan,Sarita Adve,Norman
P. Jouppi, “Perfomance of Image and Video
Processing with General-Purpose Processors
and Media ISA Extensions.” Proc. of ISCA,
pp.124-135, 1999.

6) T. Fukawa, K. Tanaka and J. Miyazaki, “The
Highly Functional Memory Controller for Main
Memory Database.” Design Gaia 2002, ARC,
2002 (in Japanese).

7) Gerry Kane and Joe Heinrich, “MIPS RISC
ARCHITECTURE.” Prentice Hall, 1991.

研究会Temp

研究会Temp

研究会Temp

研究会Temp

研究会Temp
－88－

