HEWRT — %5 F v
(2003. 3. 10

Evaluation of Cache Memory as FIFO Buffer

KHAIRUDDIN BIN KHALID® and KIYOFUMI TANAKA®-ff

Conventional caches are not always effective when a running program exhibits little locality
in memory accesses. To utilize a large cache memory in today’s processors, we propose a
built-in FIFO buffer based on a concept of reconfigurable caches where a cache memory is
dynamically divided into several partitions. The FIFO mechanism is implemented with small
additional hardware, avoid memory fragmentation, and improve performance of data accesses.

1. Imntroduction

Current high performance general-purpose
processors are used for a variety of applica-
tion domains, including scientific, engineering,
transaction processing, and decision support.
Several quantity characterizations have shown
that applications from different domains exhibit
different characteristics!). As computer sys-
tems are used increasingly in wide variety of
applications, a “one-size-fits-all” design philos-
ophy will be inadequate in the near future. For
example, the use of large caches is a common
trend across general-purpose systems, some-
times consuming up to 80% of the total tran-
sistor budget and up to 50% of the die area?.
While large caches are effective for a variety of
conventional workloads, they are often ineffec-
tive, for example, for media processing appli-
cations because of the streaming nature of the
data accesses and the large working sets in these
applications.

In response to this observation Ranganathan
et. al® proposed caches organization called re-
configurable caches. Reconfigurable caches al-
low a on-chip cache memory to be dynamically
divided into multiple partitions that can be as-
signed to different activities when a running ap-
plication has little locality of data accesses.

When a processor sequentially accesses many
data which are located at a certain interval in
a memory, those data are brought into a cache
and put at a certain interval, which means that
many other data that are around the accessed
data and would not be touched are also inserted

t School of Information Science, Japan Advanced In-
stitute of Science and Technology

11 “Information and Systems”, PRESTO, Japan Sci-
ence and Technology Corporation(JST)

into the cache. This kind of layout wastes cache
space. In order to prevent the situation from
occurring, it is effective for a processor to have
a built-in FIFO buffer and use it instead of the
cache when many non-contiguous data are ac-
cessed. In this study, we are focusing on ap-
plication of reconfigurable caches to a FIFO
buffer. By implementing one partition in recon-
figurable caches as a FIFO buffer, we can avoid
fragmentation in a cache and improve perfor-
mance of memory accesses.

2. Reconfigurable Caches

It is a common trend today that processors
have large caches. While some applications use
large caches effectively, some don’t because of
no temporal or spatial locality?). To fully utilize
large caches, Ranganathan et. al®) proposed
reconfigurable caches. '

Paper® showed that by enabling caches to
be divided into multiple partitions dynamically
and use those partitions as lookup tables for
instruction reuse, there are 1.04X to 1.20X of
improvements in media processing benchmarks.
They called this kind of design technique re-
configurable caches. There are several possi-
ble applications for reconfigurable caches such
as lookup tables for value prediction, memo-
rization, instruction reuse, compiler or compi-
lation controlled memory and prefetched data
partition. There is several design aspects that
must be considered on designing reconfigurable
caches and our option.

2.1 Partitioning

The key challenge in designing a reconfig- .
urable cache is to devise mechanism for dividing
the cache memory into different partitions dy-
namically. Our primary design exploits set as-
sociativity in conventional cache organizations.

152—16

Address In

Address In

Partition 1

Data Out
Select E=y

Compare

Hit/Miss
. Data Out
Select @

Hit/Miss

Fig.1 Reconfigurable cache based on 2-way set
associative.

The reconfigurable cache can be built on set as-
sociativity in natural way. That is, we divide
a cache memory into partitions at the granu-
larity of ways in a set associative cache. The
example of exploiting the set associativity for a
reconfigurable cache is shown in Fig. 1.

In our implementation we are going to modify
a conventional 2-way set associative cache and
make it accommodate general feature of a cache
in one way and an effect of a FIFO buffer in
another way.

2.2 Detection

A reconfigurable cache needs to know when it
should act as a normal cache and when it should
act as a reconfigurable cache with one partition
for a normal cache and another partition for a
special use. To make this change actually possi-
ble, we select software-controlled approach. We
are going to provide a special register whose
value invokes the reconfiguration. This spe-
cial register is set by execution of the special
instructions. That is, applications themselves
control the configuration of the cache accord-
ing to their decision. Resetting the register re-
stores the cache configuration to a normal cache
mode.

2.3 Addressing

In a conventional cache, a middle portion (in-
dex field) of a memory address is used to select
a set that should be searched. The specified set
by the index consists of data, tag, and status
(validity, etc.) for each way. Each tag is com-
pared with the upper portion (tag field) of the
address to determine whether the entry corre-

sponds to the address.

Addressing in a reconfigurable cache differs
from that of a conventional one. The method
depends on what purpose the special partitions
are used for. For example, when a partition
is used as a branch or value prediction buffer,
the partition would be indexed by a part of an
instruction address instead of a data address.

Such a use of a partition forces the cache or-
ganization to have an extra input port of ad-
dresses and also an extra output port since two
or more partitions might be accessed simulta-
neously. We propose an application of a recon-
figurable cache, a FIFO buffer, that does not
require any extra ports. The structure is de-
scribed in detail in the next section.

2.4 Data Consistency

In one of conventional caches, when a write
occurs, the new value is written only to a block
in the cache. The modified block is written to
the next level cache or main memory when it
is replaced. This kind of scheme is called write
back. In a reconfigurable cache, after a parti-
tion moves to a special purpose, it is necessary
to write back dirty blocks in the partition into
the next level cache or main memory.

There are two options, cache scrubbing and
lazy transitioning in®. The former performs
all write back operations on the partition at
the same time that the reconfiguration occurs.
The latter performs a write back of a block
only when the entry is being overwritten, that
is when a replacement is processed. We use
the latter scheme since there is little difference
between the scheme and that of conventional
caches, which means it does not require much
extra hardware. In our usage as FIFO, data ac-
cesses to a cache memory always search all par-
titions and the partitioning makes sense only
when a replacement is processed. Therefore,
data consistency is naturally maintained.

3. An Application: FIFO Buffer

In general, instruction accesses by a program
execution show a tendency of locality enough
to have the benefit of an instruction cache. On
the other hand, a data cache of the general
cache structure has inefficiency against process-
ing that exhibits no locality in data accesses.
Therefore, we give a data cache the ability to
switch to multiple partitions one of which is

used as a FIFO buffer and cope with data ac-
cesses with no locality.

3.1 Motivation and Basic Policy

We are now focusing on an example, that is
sequential accesses to data of a certain interval
in memory, where each data is accessed only
once. Although they are sequential they are
not continuous resulting in fragmentation in a
conventional cache memory. The fragmentation
is wasting not only space in cache memory but
also time to transport data between the cache
and external memory, since the cache mecha-
nism assumes a block as a unit which might
include data being not accessed. This kind of
data accesses can be found often in, for exam-
ple, database query processing. The use of a
smaller size of block is one solution to the prob-
lem. However it requires much more tag and
state memory spaces than that of the usual size
(16-32 bytes) of block and cannot receive ben-
efit from spatial locality.

As for such accesses to sequential data of a
certain interval, a memory address of each data
itself does not have much importance for the
intention of a program in many cases. Only
the fact of regular and in-order injections of se-
quential data into the execution of memory ac-
cess instructions is essential. Conventional data
caches cause inefficiency against such accesses
since it depends particularly on the structure
of blocks and data addresses. In order to pre-
vent inefficiency caused by the fragmentation in
the cache from occurring, it is effective to use
a FIFO buffer instead of a conventional data
cache. A characteristic of first-in and first-out
is suitable for the sequential accesses.

The size of FIFO needs to be large enough
to deal with a large data set, especially when
supported by a direct memory access mecha-
nism described in section 3.3. A large FIFO
can bridge a gap in speed between inside and
outside of a processor. However, equipping a
processor with a large memory dedicated to the
FIFO buffer can casily increase the chip size and
costs. Therefore, we implement a FIFO buffer
within a partition in a reconfigurable cache.
This strategy is based on the observations that
a partition, or way, in a primary cache is not
small, 4 Kbytes or more in today’s microproces-
sors, and that the cache is not used effectively
anyway for the memory accesses in question.

3.2 Structure of Partitions

We build a reconfigurable cache as a FIFO
buffer based on a 2-way set associative cache.
In our reconfigurable cache, when the value of
the special register for the cache configuration is
zero, the cache functions as a 2-way set associa-
tive cache. When the register is set, one parti-
tion is used as a general-purpose data cache and
the other as FIFO. Fig. 2 shows the configura-
tion after it is configured as multiple partitions.

The left partition in the figure functions as
a direct mapped cache and the right one as a
FIFO. Which partition is accessed from a mem-
ory access instruction depends on the physical
memory address. For example, the highest bits
in an address decide it. This means that it is
necessary for a compiler or linker to relocate
data sets being accessed via FIFO appropri-
ately and for a virtual memory to translate the
virtual addresses to the corresponding physi-
cal ones. Since both partitions are accessed as
data accesses, only a partition results in giving
a data to a requesting instruction at a time. In
other words, there is no chance for both parti-
tions to be needed simultaneously. Therefore,

. our reconfigurable cache has a single output

port common between two partitions, whereas
the original reconfigurable caches must have the
same number of output ports as partitions.

An entry to be read in FIFO is indicated by a
read counter. Similarly, an entry to be written
is indicated by a write counter. These counters
are automatically increased by one at read or
write, respectively. When the value of the read
counter is equal to that of the write counter, no
valid entries exist in FIFO and a miss signal is
asserted. Consequently, FIFO does not need to

[seecr| Tac [mmoex Jorrser]

—‘| Read Counter]—-v DATA!
Write Counter I»-»

] DATS

T
Data Out

Hit/Miss
FIFO Buffer

L
Normal Caches

Fig.2 Reconfigurable cache as FIFO buffer.

be indexed by any address other than the two
counters. This means that an extra address in-
put port that the original reconfigurable caches
have is not required for our usage. In addition,
the structure does not need any tag matching
for searching, which can simplify the hardware.

Another feature is that only entries that are
actually used as FIFO entries invade the parti-
tion. Entries in the FIFO partition that have
not been pointed to by the write counter remain
as normal cache ones. Therefore, all the parti-
tion is not occupied when a data set is smaller
than the partition size. The surviving entries
have nothing to do with data consistency since
all partitions are searched in every data ac-
cesses. In order to leave as many surviving
entries as possible, there is an option that the
write counter goes back to a top of the partition
when entries which the read counter has passed
are found. This can make the size of FIFO as
small as possible, although the effectiveness of
this scheme depends on a speed gap between
read and write operations and the write pointer
might not be able to increase when it meets the
read pointer after going around. Our imple-
mentation does not select this option because
of the simplicity of circuits.

3.3 Cooperation with Bus Transfer

Mechanism

Sequential memory access instructions (load
instructions) take a data out of FIFO, while
data read from an external memory are to be
inserted into FIFO. Although our FIFO buffer
aims chiefly at avoiding fragmentation in a
conventional cache, the mechanism exhibits its
power only when it absorbs a gap between the
speed of execution of load instructions and la-
tency of accesses to an external memory. One
of aptions is the introduction of a prefetch in-
struction. Execution of the instruction can in-
ject data to be requested into FIFO in advance.
However, the execution of the instruction passes
through pipeline resources and therefore leads
to overheads.

Some support mechanism should be provided
to make full use of FIFO. In this study, we as-
sume that there is one of DMA mechanisms
outside a processor, called “stride data transfer
(SDT)”%), which can cooperate with FIFO in
the processor. We describe the outline of SDT
and relationship between the SDT and FIFO.

One of typical applications which show no lo-
cality about data access is database processing.
When columns with an attribute in a relation
table is looked over, data located at the interval
that corresponds to the tuple size are accessed
sequentially. DRAM is constructed in rectangle
array of memory cells where data is accessed by
indicating row and column addresses. After the
cells in a row addressed by the row address are
latched, the target data is specified by the col-
umn address and output. A memory controller

. divides a memory address from a processor into

the row and column address and sends them to

DRAM one by one. Although general memory

controllers can only read and write continuous

and adjacent bits in a row in a burst mode,
the DRAM structure can let the memory con-

troller access any bits, for example, bits at a

fixed interval, in a row quickly only by receiving

corresponding column addresses. The memory
controller has only to know the interval and the
number of requested data to generate the col-
umn addresses.

The procedure of the stride data accesses is
as follows.

(1) Before a program invokes the SDT mech-
anism, the execution of instructions sets
the address space identifier, interval and
the number of data to the registers in the
memory controller.

(2) When the execution of a load for the tar-
get data set finds a valid entry in FIFO, it
is served by FIFO and the read counter is
increased by one. When it meets a FIFO
miss, the processor issues a memory re-
quest to the memory controller.

(3) When the memory controller finds the

matching of the physical address and the
value of the address space identifier, it
dispatches row and column addresses to
DRAM and then sends a data read from
DRAM to the processor. After that,
it generates the next column address by
adding the previous column address and
the value of interval, dispatches it to
DRAM, decrements the value of the reg-
ister indicating the number of data, and
then sends a read data to the processor.
This process is repeated unless the col-
umn address exceeds the size of a row or
the number of data gets zero.

(4) Every time the processor receives a data,
the data is inserted into FIFO and the
write counter is increased.

It is possible for FIFO misses to occur when
an load instruction is executed before the cor-
responding data arrives at FIFO. The processor
recognizes this as a miss and issues a request to
the memory controller. The memory controller
discards this request when the address is within
the ongoing SDT. The memory controller sus-
pends the transfer when the calculated column
address exceeds the row size. Then the proces-
sor restarts the step (2) and the following steps
after all data in FIFO are consumed.

4. FEvaluation

We have designed a CPU core in VHDL. By
using this VHDL descriptions and a VHDL sim-
ulator (ModelSim), we performed RTL simula-
tion. In this section we will first describe the
base of our evaluation of reconfigurable caches
and FIFO buffer. Then we present the bench-
mark programs, and show results.

4.1 Processor and cache Models

The integer unit of the baseline system is a
load/store architecture that executes MIPS1 in-
structions, subset of MIPS32, through a five-
stage pipeline (IF,ID,EX MEM,WB). For the
instruction cache, we assume that it is an ideal
instruction cache (thus no I-cache misses). The
data cache is a 2-way set associative cache
whose block size is 16 byte. The total capac-
ity of the data cache is 8 KBytes. Data re-
placement is base on LRU. The data cache is
accessed in MEM stage of the pipeline. In the
RTL simulation, we made a miss penalty take
12 clock cycles. We equipped this basic data
cache with the ability to function as a FIFO
buffer in the way. When the FIFO configura-
tion is simulated, we assumed that a memory
system implemented the SDT mechanism as de-
scribed in section 3.3.

4.2 Benchmarks

We used two programs that includes simple
loop structure to evaluate the effectiveness of
the FIFO buffer mechanism.

Program 1

The first program computes the summation
of data at some stride in an integer array. The
codes is as follows.

#define N

#define STRIDE
main(){
int i,sum=0;
int vector([N];
for(i=0; i<N; i+=STRIDE)
sum += vector([i];
}

The program was executed for various N val-
ues and for STRIDE whose value is 2 or 4.
BenchMark Program 2

The second program is something like a query
processing in a database.. The array TAB is
scanned and a member “year” of each tuple is
checked. The codes is as follows.

#define N
main(){
struct {
int age;
int year;
#if BODY
int height;
int weight;
#endif
} TAB[N];
int i,hit=0;
for(i=0; i<N; i++)
if(TAB[i].year == 2003)
hit++;

}

The program was executed for various N val-
ues and for BODY whose value is 0 or 1.

4.3 Results

As for program 1, we obtained results when
STRIDE was 2 or 4 that are shown in Table 1
and Table 2, respectively. When STRIDE was
2, cache misses occurred every two successive
accesses to the array in a normal data cache.
Similarly, when STRIDE was 4, they occurred
every four accesses. On the other hand, in FIFO
method, the pipeline waited a return from a
memory only when it referred to the first inte-
ger, and could get all the succeeding integers
without stalling. The number of cycles that
the method took depended on the number of
accesses (N/STRIDE), not on STRIDE as seen
in the results. The FIFO method could reduce
about 15 to 18% of the execution time when
STRIDE was 2, and 30 to 33% when STRIDE
was 4. .

The results of program 2 when the number of
members in a tuple was 2 or 4 are shown in Ta-

Table 1 Results of Program 1 (STRIDE=2).

N Cache | Cycles | Reduction[%]
64 N;{Fm(;“ Z;g 15.10
128 NFOI';“O‘“ }g;g 16.80
256 I\IP?;HSI g?gg 17.70
o e g
2048 N;I?Oal ggégi 18.60

Table 2 Results of Program 1| (STRIDE=4).

N Cache | Cycles | Reduction[%)]
128 N&‘;{’g‘l 1812894 30.00
256 Nﬁ}"gl fgg? 31.60
12 [Aormal | 9248 32.90

ble 3 and Table 4, respectively. When BODY
was 0, cache misses occurred every two succes-
sive accesses to the tuple array in a normal data
cache. Every four tuple accesses caused a cache
miss when BODY was 1. The results are almost
the same as those of program 1. Therefore, The
FIFO method achieved similar improvement as
seen in the results.

5. Conclusion

While the use of large caches is common

across general-purpose systems, it is often inef-
fective for some applications, for example, me-
dia processing and database since they might
exhibit little locality in data accesses.
Reconfigurable caches aim at the eflective
use of cache memory space when conventional
caches cannot find any locality. In this paper,
we proposed an application of reconfigurable
caches where one partition is used as a built-
in FIFO buffer and described the way of con-
trolling it. The mechanism of the FIFO can be
implemented with small additional hardware,
prevent fragmentation in a cache memory from
occurring, and improve performance of memory
accesses. Furthermore, it becomes more effec-
tive when it cooperates with a DM A mechanism

Table 3 Results of Program 2 (BODY=0).

N Cache | Cycles | Reduction][%]

. Normal 972

32 —FFo Rl 16.50
Normal 1916

64 FIFO 1580 1750

128 Normal 3804 18.10

FIFO 3116
Normal 7580
256 —FIrO 6188 1840
Normal 15132
512 o [T 18.50
Normal | 30236

FIFO 24620

1024 18.60

Table 4 Results of Program 2 (BODY=1).

N Cache | Cycles | Reduction[%]
Normal 1180

32 TIFO 512 31.20
Normal 2332

8 FIFG 11580 32.20

128 Normal 4636 39.80

FIFO 3116
Normal 9244
256 FIFO 183 33.10
Normal 18460

FIFO 12332
Normal | 36892

FIIFO 24620

33.20

1024 33.30

such as the SDT.

Simulations using the CPU core we designed
showed that the execution time could be re-
duced by 33% for programs that included a sim-
ple loop and accessed an array at some interval.

Acknowledgments

In this study, we are using tools provided
by university programs of Synopsys, Inc. and
Model Technology, Inc. We would like to thank
both of them.

References

1) K.Diendorf and P.K.Dubey, “How Multime-
dia Workloads will Change Processor Design.”
IEEE Computer, Vol.30, No.9, pp.43--45, 1997.

2) J.Henessy, “The Future of System Research.”
IEEE Computer, Vol.32, No.8, pp.27-33, 1999.

3) P.Ranganathan, S.Adve and N.P.Jouppi, “Re-
configurable Caches and Their Application to
Media Processing.” Proc. of ISCA, pp.214-224,
2000.

4) P.Ranganathan, S.Adve, N.P.Jouppi, “Perfo-
mance of Image and Video Processing with
General-Purpose Processors and Media ISA
Extensions.” Proc. of ISCA, pp.124-135, 1999.

5) T.Fukawa, K.Tanaka and J.Miyazaki, “The
Highly Functional Memory Controller for Main
Memory Database.” IPSJ SIG Notes, ARC,
Vol.2002, No.112, pp.77-82, 2002.

