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Complexity Analysis of A Cache Controller
for Speculative Multithreading Chip Multiprocessors

YOSHIMITSU YANAGAWA," LUONG DINH HUNG, " CHITAKA TWAMA it
Niko DEMUS BARLI, " SHUICHI SAKAI't and HIDEHIKO TANAKA'f

Although many performance studies of memory speculation mechanisms in speculative multi-

threading chip multiprocessors have been reported,

it is still questionable whether the mechanisms

are complexity effective and worth to implement. In this paper, we perform a complexity analysis
of a cache controller designed by extending an MSI controller to support thread-level memory
speculation. We model and estimate the delay of logic on critical paths and additional area over-
head to hold additional control bits in cache directory. Our analysis shows that for many protocol
operations, area overhead occupies more than half of the total delay. This area overhead is however
smaller than the delay for accessing and comparing cache tags. When the protocol operations are
performed in parallel with tag comparison, the critical path latency is increased by 11%. Overall,
our results show the cache controller can be implemented with cycle time of less than 22 [FO4],
and can be made faster if we further pipeline the protocol operations.

1. Introduction

Chip Multiprocessor (CMP) architecture is becom-
ing increasingly attractive because of its capability to
exploit Thread Level Parallelism (TLP) in multithread
or multiprogram workloads. However, to be fully ac-
cepted as a general purpose platform, it must also
deliver high performance when executing sequential
applications. In order to extract TLP from sequen-
tial applications, a technique called speculative multi-
threading has been proposed [4-6,8,9,11]. In specula-
tive multithreading execution, a sequential program is
partitioned into threads and speculatively executed in
parallel. The threads may exhibit data or control de-
pendencies depending on the thread execution model.
Additional hardware and software supports are needed
to recover the execution when the speculation failed.

Speculative multithreading architectures usually use
a combination of control and data speculation to ex-
ploit TLP. One of useful speculation techniques is
thread-level memory speculation, in which a thread
executes memory load speculatively regardless the
possibility that a predecessor thread may store into
the same memory location. A number of hardware
based mechanisms to support memory speculation
have been proposed. These mechanisms usually ex-
tend the functionality of cache to buffer speculative
state of memory and detect memory dependency vio-
lations [3-5,9].

Although many performance studies of the mem-
ory speculation mechanisms have been reported, it is
still questionable whether the mechanisms are com-
plexity effective and worth to implement. This paper
is an effort to answer this question. In this paper,
we first modify MSI (Modified-Shared-Invalid) cache
coherency protocol to support thread-level memory
speculation. The hardware organization of the cache
controller necessary to implement the protocol is then
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described and complexity analysis is performed. We
model and estimate the delay of logic on critical paths
and additional area overhead to hold additional con-
trol bits in cache directory.

We found that for a 32-kB cache with 64-byte lines,
the increase in area overhead of cache directory over
the original MSI cache directory is significant. Ac-
cess latency to the cache directory is approximately
11.4 [FOA4], whereas the logic delay of critical paths
is less than 10 [FO4]. For many protocol operations,
area overhead occupies more than half of the total
delay. This area overhead is however smaller than
the delay for accessing and comparing cache tags.
Since cache directory access and protocol logic op-
eration can be performed in parallel with cache tag
access, significant increase in critical path delay can
be avoided. In such a case, our analysis shows that
the critical path latency is increased by 11%. Overall,
our results show the cache controller can be imple-
mented with cycle time of less than 22 [FO4]), and
can be made faster if we further pipeline the protocol
operations.

The rest of this paper is organized as follows. Sec-
tion 2 describes baseline architecture and memory
speculation model assumed in the paper, and presents
related work. Section 3 explains cache controller sup-
port for memory speculation. Complexity of the cache
controller is evaluated in Section 4. Section 5 con-
cludes the paper.

2. Speculative Multithreading

2.1 Execution Model

Figure 1 depicts an organization of CMP architec-
ture we use in this paper. It consists of four Process-
ing Units (PU) with private register file, L1 I-Cache,
and L1 D-Cache. A unified L2 cache is shared by all
the PUs. Threads are scheduled to the PUs and their
execution is validated by a Thread Control Unit.

In our speculative multithreading model, a sequen-
tial program is partitioned into threads at compile
time. A thread is defined as a connected subgraph of
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a static control flow graph with a single entry point.
Thread boundaries are put at function invocations, in-
nermost loop iterations, and at remaining points nec-
essary to satisfy the thread definition [1]. Average
thread size is 10-20 dynamic instructions.

At execution time, threads are scheduled to the
PUs in a round-robin fashion. The thread model al-
lows control and data dependences to exist between
threads. The Thread Control Unit dynamically pre-
dicts threads and validates their execution. Data de-
pendencies through register are synchronized using a
combination of compiler and hardware supports. Fi-
nally, memory loads are executed speculatively. In
case a violation occurs, the violating thread and all its
successors are flushed and restarted. The mechanism
of memory speculation support is the main subject of
this paper, so we present a more detail explanation in
the next subsection.

2.2 Memory Speculation

Figure 2(a) shows an example of memory specula-
tion. Two threads ThO and Th1 are executed concur-
rently in the PU 2 and PU 3. The speculation level
of Thl is higher than ThO. Without memory spec-
ulation, the load instruction in Thl must be delayed
until the execution of the store in ThO to prevent pos-
sible memory RAW violation. In order to avoid such
synchronization overhead, memory speculation allows
Thl to execute the load before the store in ThO is
executed. If the target addresses of these instructions
turn out to be different, the speculation succeeds (fig-
ure 2(a)). Otherwise, Thl as well as all its successor
threads must be flushed and reexecuted (figure 2(b)).

In order to support the thread-level memory spec-
ulation, the underlying architecture must provide a
mechanism to detect memory dependency violations
and recover the execution. It must also provide a
buffering mechanism for speculatively stored data. In
this paper, we modify an MSI consistency protocol
and design a cache controller for the purpose. A more
detail description will be given in section 3.

2.3 Related Work

Many models and hardware/software supports for
thread level memory speculation have been pro-
posed [2-5,9,11]. Among them, [4,5,9] provide de-

PU2 PU3 PU2  PU3 PU3

ThO Time __ThO
Thi If p=q Thi Re-execute
Load a | violation ! a
Store p| tore p Thi
Load q
Squash
thread
y

(b) Thread squash and
re—execution

(a) Memory Speculation

Fig. 2 Memory Speculation

tails on how to implement the mechanism on CMP
caches.

Hydra [4] proposed an extension of cache directory
to handle speculative state of the cache line. The
speculation state is managed on per-line basis. A
write-through policy is employed and a speculation
buffer is attached to each cache to buffer speculatively
stored value.

STAMPede [9] extends the traditional MESI proto-
col with additional states to support memory specu-
lation. Similar to Hydra, the management of specu-
lative state is performed on per-line basis. However,
it differs in that it does not require special buffer to
hold speculative memory values.

In [5], memory speculation is performed using a
centralized table called Memory Disambiguation Ta-
ble (MDT). MDT is located between the private L1
caches and the shared L2 cache. It records loads and
stores executed on L1 caches. Memory management
manages memory state on per-word basis. Since the
entry of MDT is limited, memory operation of spec-
ulative threads need to be stalled if the table is full.

This work takes a middle course from the latter two
approaches. Rather than using a centralized table, we
extend the MSI protocol to support memory specu-
lation similar to STAMPede. However, we choose to
manage the memory state on per word basis as in
[5]. It is because previous work has shown that main-
taining the state on a per-line basis results in poor
performance [5].

3. Cache Controller Support for Memory Spec-
ulation

3.1 Organization

We integrated a hardware mechanism into each pro-
cessing unit's cache controller to support thread-level
memory speculation. The organization of the con-
troller is shown in figure 3. The controller mainly
comprises four units: state controller that manages
cache states, cache directory that holds cache states
and speculation history, violation detector that de-
tects memory violation, and data forwarder that con-
trols data forwarding between PUs. The controller
manages the state of memory by snooping memory
events broadcasted on a shared memory bus. This

080
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Fig. 3 Cache controller organization.

bus includes a pair of data bus and address bus, and
a number of control lines necessary to maintain the
consistency of memory.

3.2 Coherence Protocol

Our coherence protocol allows RAW violations to
occur. On the other hand, it provides support to pre-
vent WAW and WAR violations. Data speculatively
stored by a thread is temporarily held in L1 caches.
The data is allowed to be committed to L2 cache only
after the thread becomes a non-speculative thread,
thus preventing WAW violations.

To prevent WAR violations, a forwarding mecha-
nism from a producer thread to a consumer thread
is provided. When a speculative load misses in L1
cache, the PU sends a request for the corresponding
cache line on the bus. PUs that are executing prede-
cessor threads probe their L1 cache to see if they have
the requested data. If more than one PU owns the
data, the PU executing the most recent predecessor
thread is chosen to forward the data. If no candidate
is found, the L2 cache will supply the data.

The coherence protocol also provides a RAW vio-
lation detection mechanism. All words referred by
speculative loads are recorded in the cache directory.
When a store is executed, its destination address is
broadcasted on the bus. Receiving this address, each
PU that executes a thread with higher speculation
level checks its corresponding cache entry. Violation
is detected if the PU has previously loaded a value
from the same location. In this case, the cache con-
troller notifies Thread Controller Unit to flush and
restart the execution of the thread.

3.3 State Transition

To implement our cache protocol, we prepare
eight control bits (figure 4) for each word into the
cache directory. The first four bits, Modified, In-
valid, Forwarded and Load, are used to identify
the state of the corresponding word. A word can
be in one of the following seven states: Modified

g of

Store bits
—

Forwarded| Load |Modified| Invalid | Stale S0 S1 S2

Fig. 4 State bits maintained for each word in the cache

(M), Shared (S), Modified-Loaded (ML), Shared-
Loaded (SL), Modified-Forwarded-Loaded (MFL),
Shared-Forwarded-Loaded (SFL) and [Invalid (I).
These states are encoded by the four state bits as
shown in table 1. Modified bit indicates that a mem-
ory word has been modified. Invalid bit indicates the
word is invalid. Forwarded bit is set when the word
was forwarded from a predecessor thread. When any
of the predecessor threads is flushed, memory words
with the Forwarded bit set are invalidated. It is be-
cause the forwarded data may be incorrect due to
misspeculation. Load bit is set when the first access
to the memory word is a load, and is used to detect
dependency violations.

Table 1 List of states of a word in the cache

State | Forwarded | Load | Modified | Invalid
M 0 0 1 0
S 0 0 0 0
ML 0 1 1 0
SL 0 1 0 0
MFL 1 1 1 0
SFL 1 1 0 0
I X X X 1

In addition to these four bits, a set of Store bits
and a Stale bit are also stored in the cache directory.
Store bits identify which of the PUs have stored to the
corresponding address. Each Store bit corresponds to
one of three PUs, other than the PU the memory
word belongs to. Store bits are used to avoid unnec-
essary violation detections. When a store is executed
by another PU, its destination address is broadcasted
on the bus. If the store comes from a predecessor
thread, cache controller checks both the Load bit and
the Store bits. Violation is detected if the Load bit
is set, and if none of Store bits corresponding to PUs
whose speculation level is higher than the one that
broadcasted the store, is set. Stale bit is set at ar-
rival of message indicating that a successor thread has
stored into the same memory address. We call this
message Delayed Invalidation message (Dyinv). The
message indicates that the data can no longer be used
by future threads. When a thread commits, all words
with Stale bit set are invalidated.

Figure 5 illustrates state transition possible in our
cache coherence protocol. List of events as an input
to this state diagram is listed in table 2.

4. Complexity Analysis

The complexity of our cache model is analyzed in
terms of hardware overhead incurred by additional
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Table 2 List of cache coherence events

Input From Description

Load (S =0) PU core | The Load issued by the PU and the predecessor thread does not have the data
Load (SI=1) PU core | The Load issued by the PU and the predecessor thread have the data

Store PU core | The Store issued by the PU

Replace PU core | Cache line replacement

Squash TCU The thread is squashed

Commit (Stale = 0) TCU The thread is commit and the Stale bit is set

Commit (Stale = 1) TCU The thread is commit and the Stale bit isn't set

Invalidation Bus The store information is broadcasted from a predecessor thread

Delayed Invalidation (Dyinv) | Bus The store information is broadcasted from a successor thread

memory state bits and control logic. To quantify over-
head of the state bits, we estimate cache access time
using CACTI tool [7]. Since, the state bits are kept
in the cache directory, we compare the access time
for the cache directory and for the cache itself, and
discuss possible impact on cache access latency.

Delay of additional control logic is estimated using
the method of logical effort [10]. Using this method,
the delay incurred by a logic gate is calculated as the
sum of parasitic delay p and effort delay f. The effort
delay is further expressed as the product of logical
effort g, which describes how much bigger than an
inverter a gate must be to drive loads as well as the
inverter can, and electrical effort h, which is the ratio
of output to input capacitance of the gate.

d=f+p=gh+p (1)

Delay along N-stage logic path D is given by the sum
of delay through each stage:

N N
D= Zfz + Zpi
i=1 i=1

It is known that D is minimum when effort delay
through each stage is equal to an optimal effort de-

(2)

lay f:

N
=1

where f is given by

N N N
AR 00 OV (O
=1 =1 =1

Here, b; is branch effort of stage /, which estimates
the fanout effect of the logic gate in the stage.

To estimate delay overhead of control logic, we
model critical path of the logic and calculate D along
the path. As a measure of the delay, we use the
delay through an fanout-of-four (FO4) inverter. It
is known that delay normalized by the FO4 metrics
holds constant over a wide range of process technolo-
gies. To provide a concrete example, absolute delay
at 90 nm technology will also be shown, assuming
1 [FO4] = 36 ps.

(4)

4.1 Cache Directory Access Time

In this section, we discuss overhead incurred by
cache state bits. The L1 cache configuration we as-
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sume is given in table 3. We assume that cache data,
tag, and state bits are each kept in a separate mem-
ory structure. Qur coherence protocol requires eight
state bits per word. Assuming 32-kB cache with 64-
byte lines, this results in 4 kB of cache directory in
total. Because additional state bits are required to
maintain speculative state and the states are kept on
a per word basis, the directory size is much larger than
the one for conventional coherence protocol. For ex-
ample, the simplest MSI protocol only needs three
state bits per line. Then the directory would be only
24 bytes in size.

Table 3 L1 cache parameters

Size 32 kB
Line Size 64 bytes
Associativity 2
Tag 18 bits

Table 4 shows cache access latency estimated us-
ing CACTI. It can be seen the cache directory access
latency is less than tag access latency. In this case,
the critical path is in tag access operation. Since the
directory access can be performed in parallel to tag
access, it is expected that the directory would not
affect cache access latency. In this estimation, we as-
sume 32 bit address space. In larger address space,
tag array would be larger and require more access
time, so that cache directory is less likely to come on
the critical path.

Table 4 Cache access time

Delay (FO4) | Delay @90nm [ps]
Data 17.3 622
Tag 19.1 689
Directory 11.4 410

4.2 Control Logic Delay

We estimate complexity of control logic required for
four main operations of the cache controller: owner
probing and data transfer for data forwarding between
PU, violation detection and state transition. Critical
paths of each logic block are illustrated in figure 6
~ 9, along with their estimated delay. Functions of
those logics are described briefly below.

Forward - Owner Probing

On receiving a forward request, each PU checks if
it has the requested line in the cache. Then it checks
modified bit for each word in the line, and if the bit
is set, asserts owner PU line to claim its ownership.

Forward - Data Transfer

Each PU examines which PUs have claimed owner-
ship for the requested words. It compares speculation
level of all the owner PUs, and checks if it is qualified
to forward the word. If it is, it puts the word on the
bus, and if not, send a request to L2 cache.

Violation Detection

On receiving a broadcast that a store has been exe-
cuted, each PU first identifies which PUs have stored
to the corresponding word by checking its store bits.
It then compares speculation level of those PUs with
its own speculation level and with that of the latest
store. Finally it checks modified bit and load bit of
the word and detects violation.

State Transition

Manage the update of state bits in the cache direc-
tory as previously described in figure 5 and table 2.

Delay [FO4] | Delay @90nm [ps]
Owner Probing 13.9 500
Data Transfer 7.3 263
Violation Detection 18.6 668
State Transition 21.2 763

Table 5 Operation delay including access time to cache
directory

Table 5 summarizes estimated time needed for each
operation. The operation times include access time to
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cache directory, which has been previously estimated
to be 11.4 [FO4] (table 4). It can be seen that di-
rectory overhead occupies a large part of path delay.
The results also indicate that the control logic slightly
extend the critical path by 11% from 19.1 [FO4] (tag
access latency) to 21.2 [FO4] (state transition up-
date). Overall, it is estimated that the cache con-
troller can operate at a reasonable cycle time of less
than 22 [FO4]. This can be made faster by applying
optimizations such as pipelining the directory access
and logic operation.

5. Conclusion

A number of memory speculation mechanisms in
speculative multithreading chip multiprocessors have
been proposed and many performance studies have
been reported. However, it is still doubtful whether
the mechanism is complexity effective to implement.
In this paper, we performed a complexity analysis of
a cache controller designed by extending an MSI con-
troller to support thread-level memory speculation.
We modeled and estimated the delay of logic on criti-
cal paths and area overhead to hold additional control
bits in cache directory.

We found that the increase in area of cache direc-
tory over the original MSI cache directory is signifi-
cant. This is a consequence of the requirements to
maintain speculative state of memory on a per-word

basis rather than per-line basis. For many protocol
operations, area overhead occupied more than half
of the total delay. This area overhead is however
smaller than the delay for accessing and comparing
cache tags. When the protocol operations are per-
formed in parallel with tag comparison, the critical
path latency is increased by 11%. Overall, our results
showed the cache controller can be implemented with
cycle time of less than 22 [FO4]. The cycle time can
be made shorter if we further pipeline the protocol
operations, for example by splitting cache directory
access and logic operation. The impact of this opti-
mization to the performance is the future work of this
research.

Acknowledgement

This research is partially supported by Grant-in-Aid
for Fundamental Scientific Research B(2) #13480077
from Ministry of Education, Culture, Sports, Science
and Technology Japan, Semiconductor Technology
Academic Research Center (STARC) Japan, CREST
project of Japan Science and Technology Corporation,
and by 21st century COE project of Japan Society for
the Promotion of Science.

References

[1] N.D. Barli, H. Mine, S. Sakai, and H. Tanaka. A Thread
Partitioning Algorithm using Structural Analysis. ARC-
2000-139, 2000(24):37-42, 2000.

[2] M. Franklin and G. S. Sohi. ARB: A Hardware Mecha-
nism for Dynamic Reordering of Memory References. IEEE
Transactions on Computers, 45(5):552-557, 1996.

[3] S. Gopal, T. N. Vijaykumar, J. E. Smith, and G. S. Sohi.
Speculative Versioning Cache. In Proc. of the 4th Inter-
national Symposium on High-Performance Computer Ar-
chitecture, pages 195-205, 1998.

[4] L. Hammond, M. Willey, and K. Olukotun. Data Specu-
lation Support for a Chip Multiprocessor. In Proc. of the
8th International Symposium on Architectural Support for
Parallel Languages and Operating Systems, pages 58—69,
1998.

[5] V. Krishnan and J. Torrellas. A Chip-Multiprocessor Ar-
chitecture with Speculative Multithreading. IEEE Trans-
actions on Computers, 48(9):866—880, 1999.

[6] P. Marcuello, A. Gonzalez, and J. Tubella. Speculative
Multithreaded Processors. In Proc. of the 12th Interna-
tional Conference on Supercomputing, pages 77—-84, 1998.

[7] P. Shivakumar and N. P. Jouppi. CACTI 3.0: An Inte-
grated Cache Timing, Power, and Area Model. Technical
Report WRL-2001-2 HP Labs Technical Reports, 2001.

[8] G.S.Sohi, S.E. Breach, and T.N. Vijaykumar. Multiscalar
Processors. In Proc. of the 22nd International Symposium
on Computer Architecture, pages 414—425, 1995.

[9] J.G. Steffan, C.B. Colohan, A.Zhai, and T.C. Mowry. A
Scalable Approach to Thread-Level Speculation. In Proc.
of the 27th International Symposium on Computer Archi-
tecture, pages 1-12, 2000.

[10] I. E. Sutherland, R. F. Sproull, and D. Harris. Logical
Effort: Designing Fast Cmos Circuits. Morgan Kaufmann,
1999.

[11] J.-Y. Tsai, J. Huang, C. Amlo, D. J. Lilja, and P.-C.
Yew. A Chip-Multiprocessor Architecture with Specula-
tive Multithreading. [EEE Transactions on Computers,
48(9):881-902, 1999.

0120


研究会Temp 
－12－




