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Way-variable Caches for Static Power Reduction

LuonG DiNH HUNG,t CHITAKA IwAMA ,+ NIKO DEMUS BARLI,*
SHUICHI SAKAIt and HIDEHIKO TANAKA*

Power consumption due to leakage increases rapidly as devices scale to smaller geometries.
We propose way-variable caches that dynamically adapt the number of active ways according
to runtime requirements. By entirely gating the unused ways from the voltage supply, the
leakage can be significantly reduced. We then apply an original algorithm utilizing data

access locality to make proper resizing decisions.

Performance evaluations are done with

a superscalar processor model having 16-KB, 4-way set-associative L1 instruction and data
caches. The results verified that, on average, 1.7 ways of the instruction cache can be disabled
with only 1.3% performance degradation in the case of instruction cache. The values are 1.5

ways and 1.1% in the case of the data cache.

1. Introduction

Shrinking of CMOS devices following Moore’s
law offers us smaller, faster but often leakier tran-
sistors. The static power consumption due to
leakage current has been becoming a large frac-
tion of total power consumption of recent micro-
processors. It has been reported that static power
dissipation counts for more than 20% of entire
power consumption in Itanium processor, imple-
mented in 0.13um process (3.4 times the percent-
age of static power of previous generation imple-
mented in 0.18um process) [1]. Due to the expo-
nential growth in the magnitude of leakage, static
power is likely to be the limiting factor in power-
constraint microprocessor designs in the future.
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Fig. 1 Leakage in (a) CMOS transistor and (b) in
SRAM cell

Figure 1-a shows two most important compo-
nents of leakage in a CMOS transistor. As the
gate length becomes shorter, the potential bar-
rier could be lowered by the source-drain voltage
(Vds). This causes significant subthreshold leak-
age current flowing between the source and drain
even when the applied gate voltage(Vgs) is far
below the threshold voltage (Vth). At the same
time, the gate dielectric is demanded to be thin-
ner according to the scaling rule. This increases
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the capability of electrons tunneling through the
dielectric, resulting in larger gate leakage.

Our research focuses on reducing the leakage
in caches. Modern microprocessor designs de-
vote a large fraction of chip to multi-level caches,
making them an reasonable target for attacking
leakage. Figure 1-b shows several main leakage
paths existing in a typical 6-transistor SRAM cell.
There are two main subthreshold leakage paths;
one leakage path inside the cell and one coming
from the bitline. Each passes over two transis-
tors in which one is on and the other is off. There
is some amount of gate leakage at every transis-
tor. It is known that the nmos exhibits more gate
leakage than the pmos and the nmos transistor in
on state causes much gate leakage [10].

It is widely known that the characteristics of
cache requirements in microprocessors is quite
different among applications as well as among
phases of individual application execution. In
this research, we propose way-variable caches in
which some ways of the set-associative cache can
be disabled during periods of modest cache ac-
tivity, while more cache ways may remain opera-
tional for more cache-intensive periods. High de-
gree of leakage reduction (both subthreshold leak-
age and gate leakage) can be achieved in the dis-
abled ways. We then propose a novel algorithm
considering the locality characteristic of the data
access in order to make proper way controlling
decisions.

The remainder of this paper is organized as fol-
lows. Section 2 describes some related work. In
section 3, we explain the structure organization of
way-variable caches as well as the proposed resiz-
ing algorithm. Evaluation is described in section
4. Finally, section 5 concludes the paper.

2. Related Work

There is a vast body of literature focusing on
cache leakage reduction in recent years. The
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drowsy cache [2] utilizes Dynamic Voltage Scal-
ing (DVS) technique. In drowsy cache, cache lines
are periodically turned to drowsy mode (low leak-
age mode) by connecting them to the low volt-
age source. Only those cache lines being accessed
are woken up and restored to the normal value
of Vdd. However, the subthreshold leakage from
bitlines cannot effectively reduced as well as addi-
tional cycles is needed to wake up the cache lines
in drowsy mode.

The decay cache [4] employs gated-Vdd tech-
nique [8] that is widely used for leakage reduc-
tion in logic circuits. In this technique, an large
nmos transistor is introduced in the ground path
of each cache line. The gating transistor is turned
on when the corresponding cache line is active. If
a cache line has not been accessed for some pre-
determined amount of time, the gating transistor
is turned off. Because the data is lost when gat-
ing, decay cache can increase the miss rate if it
disables the data that is accessed again later. Al-
though the gated-Vdd technique can effectively
eliminate leakage, inserting the gating transistor
in the critical pull-down path inevitably increases
the cache access latency. The DRI cache [3] em-
ploys gated-Vdd technique at larger granularity.
Entire subarray that contains several sets can be
disabled at a time. Applying gated-Vdd at sub-
array level enables more degree of leakage reduc-
tion.

The selective cache ways [5] has originated the
idea of adapting number of cache ways to runtime
cache requirements. The work focus on saving dy-
namic power consumption. Little modifications
to the conventional SRAM are added to prevent
precharges, wordlines and sen-amps of disabled
subarrays from switching. Our work extends the
idea to support leakage reduction. The details
of SRAM structure as well as an effective algo-
rithms controlling number of enabled cache ways
is described in the next section.

3. Way-variable Caches

3.1 Concept and Structure

In modern designs, large on-chip caches are of-
ten partitioned into multiple subarrays. The sub-
division of wordlines and/or bitlines in such de-
signs helps reduce the access latency. This is es-
pecially useful for associative caches for which the
wordlines can be exceeding long. There are tools,
when provided which parameters such as cache
size, associativity, number of read/write ports,
etc, analyze and choose the partitioning config-
uration that offers optimal performance [11]. By
carrying experiments using such tools with vari-
ous parameters as well as consulting real cache de-
signs in recent commercial products, it has been

verified that the number of time the wordline seg-
mented is usually larger than the cache associativ-
ity [5]. It is, therefore, reasonable to assume the
associative cache structure in which each cache
way locates to seperate subarrays. Each subarray
has its own decoder, precharger, sense-amplifier
circuits so the subarrays can be controlled inde-
pendently from each others.
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Fig. 2 The structure of an subarray

Figure 2 shows the overall structure of an sub-
array of the way-variable cache. This subarray
is assummed to belong to way0 (it could be data
or tag portion of the way). There is way0-enable
signal that goes to the decoder, precharge and
sense-amp of the subarray. A large pmos transis-
tor connects the voltage supply Vdd to the cell
array and also controlled by way0_enable signal.
This transistor serves the functioning of gated-
Vdd transistor. The cache controller manages the
current states of ways and signifies way0-enable
HI or LOW depending on whether way0 is en-
abled or disabled.

The circuit organization described here is quite
similar to the one found in [5]. Because the pur-
pose is to reduce dynamic power consumption
in [5], gating the decoder, precharge and sense-
amp way to avoid any switching activity in the
disabled way is sufficient to that purpose. Our
originality is that we add the gating transistor in
order to be able to separate the cells in disabled
way from supply voltage to reduce the leakage.

When the way0 is disabled, the gated-Vdd tran-
sistor is turned off, gating all cells in the subar-
ray from the supply voltage. The internal nodes
of each cell (node A, B in Figure 1-b) will soon
drop to some intermediate voltage levels. Be-
cause leakage current highly depends on voltage
level, such reduction in voltage level results in sig-
nificant reduction of the leakage inside the cells.
Moreover, the precharge circuits do not operate
the disabled ways, causing the bitlines dropping
from high precharged voltage level. This helps
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reduce the leakage currents coming from bitlines.

When applying gated-Vdd techniques in
SRAM, we have two possible choices: using pmos
transistors to gate the Vdd paths or using the
nmos transistors to gate the ground paths. The
decay cache needs to insert nmos transistors in
the ground paths to suppress the leakage cur-
rent coming from the bitlines. In SRAM access,
the pull-down paths, rather than pull-up paths, is
considered the critical paths. The gating transis-
tor sitting in ground path inevitably adds some
amount of resistance to the pull-down path and
consequently degrades the cache access latency.
In our way-variable cache, because the bitlines of
disabled ways eventually drop to low voltage lev-
els, the amount of leakage coming from bitlines is
small and can be dismissed. Adding gating pmos
in Vdd path to suppress leakage inside the cell
is sufficient and avoids the access latency degra-
dation. Moreover, it is known that gate leakage
in pmos has one order of magnitude smaller than
that of nmos of the same size. Using pmos as
gating transistor results in smaller active leakage
(active leakage is the leakage exhibited by enabled
ways or cells).

When a way is turned off, all the data in that
way will be destroyed. We must ensure that any
modified data is saved before turning the way off.
The mechanisms to maintain the data integrity
may incur overheads in terms of clock cycles as
well as additional supporting hardwares. In [5],
authors advocates the use of read-and-refill opera-
tion to move modified data to the other ways. It
costs no additional hardware. We can also ap-
ply the idea of eager-writeback [9] that try to
write modified data back whenever the bus to
lower cache is free. Such a technique can help
increase the bus utilization as well as reduce the
overhead of writing back modified data when the
way is going down. In this research, we limit the
application of way-variable cache to L1 caches.
We assume write-through data caches which are
common in recent commercial processors (IBM
Power4, Intel Itanium, etc,). However, when con-
sidering the applications of way-variable caches
to write-back caches or low lever caches, the tech-
niques mentioned above can help us to reduce the
overheads.

3.2 Resizing Algorithm

As described in previous section, the disabled
cache ways can exhibit very small leakage. For
way-variable caches to be successful, we need to
develop an algorithm that can properly determine
when and to which direction (enable or disable
more ways) the resizing will be taken.

Set associative caches usually employ the Least-
Recently-Used (LRU) algorithm to choose the

candidate block whenever replacement is re-
quired. The replaced block is the one that has
been unused for the longest time. LRU algorithm
is implemented by providing some state bits in
each cache set. Accesses to the cache set will up-
date the corresponding state bits. The LRU block
can be identified by the contents of these bits.

We propose a resizing algorithm that takes ad-
vantage of these bits. Whenever an access comes
to the cache, the state bits of the corresponding
set are also read. If the access is a cache hit,
by examining the contents of state bits we can
determine whether the hitting block is the LRU
block or not. We count the number of accesses to
LRU blocks (NLRU _accesses) over the total num-
ber of cache accesses(Niotal_accesses) Over specific
execution window.

The value of N Ry _accesses allows us to make
some predictions about how the cache missrate
will vary if we enable or disable more ways.
Specifically, as we decrease the number of dis-
abled ways by one in the next execution window,
we expect the cache missrate will be increased by

NL RU _accesses

Niotal _accesses
tion is made oaric%ﬁseeqassumption that the charac-

teristics of cache accesses remain relatively stable
over the period that quite longer than the length
of single execution window. The same access that
hit an LRU block in the previous window oth-
erwise likely experiences a miss on the follow-
ing windows (the block has already been evicted
due to fewer enabled ways). Large NLRU accesses
consequently results in more cache misses, and
in turn, more performance degradation when we
reduce the enabled cache ways. Conversely, if
NLRU _accesses 1s small, the benefit of allocating
more cache ways to exploit temporal locality of
the data becomes small.

about x100 percent. The predic-

for the current window
total _accesses

//collect N N

_ accesses

N
if (LRU—"“’“E >thresholdl & & MWAY ., ay window < nwayMAx]
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nwaynextfwindow = nwaycurrmt7VWndow;

Fig. 3 Resizing algorithm

The proposed resizing algorithm is shown in
Figure 3. NLRU_accesses, Niotal_accesses are col-
lected for each execution window. We then cal-

culate W If the ratio is smaller than
total _accesses
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a predefined value thresholdl and the number of
enabled ways is more than one, we decrease the
number of enabled ways by one. If the ratio
is larger than threshold2 (threshold1<threshold?2),
we increase number of enabled ways by one. Oth-
erwise, the number of enabled ways is unchanged.
The threshold1 and threshold2 parameters control
the “aggressiveness” of the resizing algorithm.
Small thresholdl and large threshold2 make the
algorithm “conservative” in the sense that they
bias the upsizing direction and enable many cache
ways. On the other hand, algorithms with large
threshold1 and small threshold2 have the strong
tendency of trading performance for reduction of
more ways. Due to its simplicity, the proposed al-
gorithm could be implemented with very modest
hardware resource.

4. Evaluation

4.1 Leakage Evaluation
4.1.1 Evaluation Method

We carried out Spice simulation to measure the
amount of leakage exhibited by individual SRAM
cells in various cache configurations: 1)normal
cache without any leakage consideration, 2) decay
cache, 3)drowsy cache and 4)way-variable cache.
Transistor parameters at 65nm process technol-
ogy, obtaining from Berkeley Predictive Technol-
ogy Model [7], was used for the evaluation. Tran-
sistor threshold voltage is |Vth|=0.2V. Vdd is
set at 1V. In case of drowsy cache, voltage sup-
ply at drowsy mode is 0.5V. Detail circuit setups
using in the evaluation are shown in Figure 4.
Transistor model level 51, which considers both
subthreshold leakage and gate leakage, is used.
4.1.2 Result

We measure the total leakage current of the
cells when they are in active state and when
they are putted in low leakage mode (or standby
mode). The results are shown in Figure 5-a and
5-b, respectively. The leakage in the figure is fur-
ther broken down into subthreshold leakage and
gate leakage.

Because no leakage reduction measure is taken,
normal cache cell has the same value of leakage
current in Figure 5-a and 5-b. The active leakage
values are almost equal (95 nA) for all cells ex-
cept the decay cache cell which is 20 nA larger.
The excessive leakage in decay cache cell is caused
by the gating nmos transistor. This transistor is
on when the cell is enabled and the gate leak-
age of nmos in on state is significant. The way-
variable cache cell, which uses pmos instead of
nmos gating transistor, shows almost no increase
in active leakage. The result is consistent with
the fact that p-type transistors have one degree
of magnitude lower gate leakage than n-type tran-
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Fig. 4 Circuit Setups for Evaluation
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Fig. 5 Leakage in active mode and standby mode

sistor [10].

The standby leakage of drowsy cache cell is 60
nA. While gate leakage is reduced much when
Vdd changing from 1V to 0.5V in drowsy cache
cell, subthreshold leakage is not changed much.
It is because the bitlines are still kept at 1V
and the subthreshold leakage current from bit-
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line are almost unchanged. The decay cache
cell, due to its capability of suppressing the leak-
age paths from bitlines, offers higher degree of
standby leakage reduction than the drowsy cache
cell. The standby leakage in this case is 27 nA.
Way-variable cache cell shows the best perfor-
mance. The standby leakage is reduced to only 11
nA, which is tenth times smaller than the leakage
of the normal cell.

The way-variable cache is good because it of-
fer us lowest standby leakage. Additionally, con-
trary to the decay cache, implementation of way-
variable cache does not incur the increase in ac-
tive leakage of the cell.

4.2 Performance Evaluation
4.2.1 Evaluation Method

We carried out simulations to investigate the
impacts of variations in cache ways on the pro-
cessor performances. Simulations were done us-
ing SimpleScalar simulator [6]. We modeled an 6-
stage superscalar processor, having 16KB 4-way
set associative I-cache and D-cache and 256KB
4-way L2 cache. L1 cache hit, miss latency are 1
and 8 clock cycle, respectively. Simulation were
done against applications in the SPECCPU2000
benchmarks with the reference inputs. We fast-
forwarded first one billion instructions and simu-
lated the next four billion instructions.

4.2.2 Results

Performance Degradation. Figure 6 and
Figure 7 show the performance degradation in-
curred for each benchmark as the number of en-
abled ways of the instruction cache and data
cache varied. The amount performance degrada-
tion quite different among applications. In Figure
6, performance degradations of applications like
mcf, ammp, swim are very small. We can exe-
cute these applications from the beginning to the
end using the instruction caches with minimum
number of enabled ways.

On the other hands, performances of crafty,
eon, vorter, equake ,mesa are very sensitive to
the number of enabled ways of instruction caches.
Performances tend to degrade abruptly as we dis-
able more caches. For way-variable caches still
being useful in such situations, we need dynamic
approaches that monitor variations of cache re-
quirements during the lifetimes of applications
and allocate appropriate number of ways accord-
ingly. Such observation can also be obtained in
the case of the data caches in Figure 7. On aver-
age, performance is more sensitive to instruction
cache than the data cache.

Resizing Algorithm Evaluation. We imple-
mented our proposed resizing algorithm into the
SimpleScalar simulator. Application executions
are divided into multiple windows. Each exe-
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Fig. 6 Performance degradation when number of en-
abled ways of instruction cache varying from one
to four
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Fig. 7 Performance degradation when number of en-
abled ways of data cache varying from one to four

cution window comprises of hundred thousands
of consecutive dynamic instructions. Threshold!
and threshold2 parameters are respectively set at
1% and 2% for the way-variable data cache. As
we observed above, the instruction cache are more
sensitive to cache size than the data cache. To
make resizing algorithm of instruction cache to be
less aggressive than that of data cache, its thresh-
old1 and threshold2 parameters is set at 0.5% and
1%, respectively.
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Fig. 8 Way-variable instruction cache: average active
way & performance degradation

Figures 8, 9 show the average number of en-
abled ways as well as normalized IPC degradation
of the way-variable instruction cache and way-
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Fig. 9 Way-variable data cache: average active way &
performance degradation

variable data cache. With our resizing algorithm,
applications are executed with quite reasonable
values of enabled ways. Applications whose per-
formances are not sensitive much to cache sizes
are executed with minimum number of enabled
ways. They are gee, mef, ammp, art, swim in case
of the instruction cache, as well as gcc, ammp,
swim, wupwise in case of the data cache. For
those application whose performances are very
sensitive to cache size, almost full cache ways
are enabled during the execution lifetimes. They
are crafty, twolf, vortex in case of the instruction
cache and crafty, mgrid in case of the data cache.

Let us consider the bzip2 application in case of
the instruction cache. Referring to Figure 6, per-
formance degradation of bzip2 is negligible when
we disable one or two ways. However, perfor-
mance quickly drops by 15% when only one way
are enabled. The result in Figure 8 shows that
we can disable 2.6 ways while paying only 0.7%
performance degradation. During the execution
lifetime, there must be some periods in which
two ways are enabled and some periods in which
only one way is enabled. Such result implies that
our resizing algorithm has been able to effectively
adapt the cache ways to runtime cache require-
ments during execution of bzip2. Similar results
can also be observed in gzip, vpr, equake, wup-
wise in case of the instruction cache and in most
of applications in case of the data cache.

On average, we can disable 1.7 ways with only
1.3% performance degradation in the case of in-
struction cache. The values are 1.5 ways and 1.1%
in the case of the data cache.

5. Conclusion

Power consumption due to leakage increases
rapidly as devices scale to smaller geometries.
Our research focus on reducing the leakage in
microprocessor caches. We propose way-variable
caches that dynamically changing the number of
active ways according to the runtime require-
ments. By entirely gating the unused ways from
the voltage supply, the leakage can be signifi-

cantly reduced. We then apply an original al-
gorithm utilizing data access locality to make
proper resizing decisions. We verified that, on av-
erage, nearly half of the cache ways of 4-way set
associative instruction as well as data cache can
be disabled with very limit performance degrada-
tion.

So far, leakage reduction in way-variable caches
has been only considered at the level of the SRAM
cells. We plan to investigate the effectiveness of
way-variable caches in terms of total power con-
sumption could be reduced at the system level.
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