2004 —ARC—157 (20)
2004—-HPC— 97 (20)
2004732

RN RAEES HRRY

IPSJ SIG Technical Report

Implementation and Evaluation of an Adaptive Scheduling Method for
a Grid Computing Environment

Georgi GEORGIEV*, Kalin KOZHUHAROV!, Mitsuyoshi NAGAO!, Manabu OMIYA?

* Faculty of Engineering, Hokkaido University
1 Graduate School of Engineering, Hokkaido University
} Information Initiative Center, Hokkaido University

Abstract Grid Computing is a next generation method of information processing. It provides an effec-
tive method for information processing by connecting geographically distributed computer resources using a
high-speed network and providing standard protocol for communication. A scheduling method is required in
order to implement an effective method for computation in the grid computing environment, because each re-
source has different characteristics, e.g., calculation speed. In this paper, we propose an adaptive scheduling
method for effective information processing in a grid computing environment that consists of diverse computer
resources. Moreover, we confirm its effectiveness through computational experiments in practical grid computing
environments.

iy

7y REREED 720 OWEIGHI A ¥ 2 — U ¥ TR 0L L 5l

FANLRIY FALE avanoy huyt BR OB kg

* LB R F TR
t AHEERFE KRR LB FeR
temER P HRER Y v 5 —

HoEL FVUy Rarv¥a—54 07, REROFLLERLEFEO—2>THSE, Zhid, WEN
OB L -3t B Y Y — AR ESTAZ LIk > TR BROBE L2 AL THFETH L. L1L
2hG, FUy Rarv¥a—54 YIBBICBTAERY V- AFITHEERESOMREVSERS, Lt
NoT, Zho Yy —ARIESEEYBERABE Y EEHT 01T, HRMRRT Va—U 2 ik
NBELEND, KBTI, SESERHERY V-3 y Rarva—F 0 Y IREIC
BT RARERABLERTL-OOFEGNAr Va— Uy VEPRETS. & 5617, HERERY
BEL TEREFHEOREMMELREET 5.

On the other hand, recently the performance of
personal computers (PC) is being improved. It is
likely that a more effective grid computing envi-

1. Introduction

Recently, grid computing has been applied

to various research fields. It is an informa-
tion processing method for large-scale problem
solving. Grid computing is expected to be-
come an effective technology for solving a wide
range of problems—from earthquake simulations
to teleimmersion.

In grid computing, physically distributed com-
puter resources are connected by a high speed net-
work. Conventional research has focused on grid
computing environments that are constructed by
connecting mainly super computers or clusters [1]
[2]. Some scheduling methods that are suitable
for such grid computing environments have been
proposed [3] [4].

ronment can be implemented by introducing PCs.
However, if a grid computing environment con-
sists of computer resources that differ extremely
in performance, there is the possibility that ef-
fective performance cannot be achieved by using
conventional scheduling methods.

In this paper, we propose an adaptive schedul-
ing method in order to implement effective in-
formation processing in a grid computing en-
vironment consisting of diverse computer re-
sources. In this research, we focus on a schedul-
ing method for parametric applications. The pro-
posed scheduling method aims at finding the op-
timal allocation of parametric jobs over the avail-

—115—

able computer resources. The allocation is de-
termined by predicting the running time of every
parametric job on every resource. This prediction
is performed by executing the application inside
the grid computing environment that is to be used
for the calculation before practical use.

In addition, the grid computing environment
is used by many users and the condition of re-
sources, i.e., CPU load, in the environment varies
frequently. There are cases where our schedul-
ing method does not work effectively when such
a change of condition occurs, because there is a
difference in the load between the condition when
the predictions are made and when the application
is executed. To solve this problem, we improve
our method by introducing a function which can
adapt to the changes in the grid computing envi-
ronment. We confirm the effectiveness of the pro-
posed scheduling method through some practical
computational experiments at various conditions
in a grid computing environment.

2. Grid Computing

2.1 Overview

Grid computing is a technology that uses dis-
tributed computer resources connected by a high-
speed network for information processing. The
spreading of high-speed network infrastructures
made the grid a frequently researched field [5] [6].

The NASA Information Power Grid (IPG) is a
typical example of a grid computing implementa-
tion. The IPG consists of high-performance com-
puters and clusters in three different research cen-
ters in the U.S. The purpose of this project is to
promote various research by providing a power-
ful grid computing environment.

Currently, grid computing is still an incipient
research topic. The middleware and high-level
tools for grid computing are under development.

2.2 Globus Toolkit

The most popular middleware for construct-
ing a grid computing environment is the globus
toolkit [7]. It is a collection of primitive tools nec-
essary for this task. In addition, it is open source
and runs on various platforms such as Linux,
Unix, IRIX and so on. The current version of
the globus toolkit is 3.0. Globus toolkit version
3.0 employs SOAP technology in order to solve
the firewall problems that version 2.4 has. The
globus toolkit has become the de-facto- standard
for grid computing.

The basic components of the Globus toolkit are

the Grid Resource Allocation Manager (GRAM),
GridFTP and the Monitoring and Discovery Ser-
vice (MDS). GRAM takes care of resource reser-
vation and submits jobs to the job-manager. It is
also responsible for allowing control and moni-
toring over the execution of the job. GridFTP
is a-service that provides secure, safe and high-
performance file transfer. MDS is the directory
service of the globus toolkit. It allows for the dis-
covery of resources, retrieving information about
their characteristics and monitoring their state. A
grid computing environment can be implemented
by combining these components.

2.3 Parametric Application

Parallel applications can benefit a lot from grid
computing, because the grid is a distributed com-
puting system. Applications designed to run on
massively parallel computers can easily be run in
a grid computing environment that is based on the
globus toolkit, because the appropriate libraries
such as MPICH-G2 are provided [8].

Another type of applications suitable for grid
computing is the parametric applications. A para-
metric application is made from a single program
and a set of different parameters that the program
is to be run with. The complete computational
result for a parametric application is obtained by
merging each result acquired from every run of
the application with a different parameter. A para-
metric application can be executed in a grid com-
puting environment without the need for specific
libraries. The most important characteristic of the
parametric application is that the different jobs,
i.e., the runs of the application with different pa-
rameters, are independent of one another and can
be freely scheduled, without paying attention to
the interprocess communication factor. In this re-
search, we focus on the parametric applications.

2.4 Scheduling

In the grid computing environment, a scheduler
is required for effective information processing.
A scheduler is needed to assign appropriate jobs
to appropriate resources, so that the application is
executed the way the user demands. So far, some
schedulers have been developed.

Nimrod-G is a scheduler, that supports its own
scripting language for describing the experiment
and the individual jobs [3]. It has support for cost
and speed optimizations and submits jobs to the
available resources that are fit for the purpose. It
also provides a graphical user interface for moni-
toring and administering the scheduling process.

—116—

AppLeS is mentioned as another project [4]. It
is based on the idea that a scheduler has to be
written specifically for the application or type of
application being run, i.e., there are no schedulers
that are fit for every kind of application. Each spe-
cific task, such as selecting resources, developing
scheduling plans or evaluating their performance,
is performed in a different module.

The Network Weather System (NWS) has been
proposed as a supporting system for the sched-
ulers [10]. It provides short-term prediction about
the future state of a computer resource in a grid
computing environment. It can provide infor-
mation about the available CPU, CPU load, free
memory and so on. The scheduler can allocate ap-
propriate jobs to each computing resource by us-
ing this information. The NWS is used by many
conventional schedulers including the schedulers
described above. However, the information pro-
vided by the NWS is not always accurate, be-
cause the NWS cannot consider what type of job
is executed on the computing resource. There-
fore, there are cases where effective scheduling
cannot be performed if it is based on the NWS.

3. Adaptive Scheduling Method
for a Grid Computing Environ-
ment

We aim to provide an effective scheduler for
parametric applications for grid computing. Our
grid environment and the details of our proposed
method are described below.

3.1 Grid Environment

Our grid environment is illustrated on Figure
1. As shown in this figure, it includes com-
puter resources with various specifications. Two
middle-class personal computers and a parallel
computer SGI Onyx 300 are included as com-
puting resources for our grid computing environ-
ment. In addition, another PC acts as the task
broker, i.e. the scheduler. The PCs that act as
computing resources have Pentium HI/850MHz
and Pentium II/1GHz CPUs. The SGI Onyx has
32 nodes running at 600MHz each and the broker
has an Athlon/1GHz CPU. The SGI Onyx is run-
ning the IRIX6.5 operating system, and the other
resources are running a Linux 2.4 based system.
All PCs have version 2.4 of the globus toolkit in-
stalled, and the SGI Onyx has version 2.2. The
PCs are connected to a 1Gbps hub, but only have
100Mbps network interface cards. The connec-
tion between the hub and the SGI Onyx is 1Gbps.

Computing Va
resources

a 1Gbps r—l

Globus
Toolkit 2.2

! 1Gbps
' 100Mbps

Task broker

Globus
Toolkit 2.4

Athlon/1000

Pentium 111/850

Figure 1 Grid environment

3.2 Adaptive Scheduling Method

The basic concept of the proposed method is
that the parametric jobs of the application are
wrapped in meta-jobs equal exactly to the num-
ber of available computer resources. In other
words, each computing resource is only used
once, i.e., only one job is submitted to a comput-
ing resource. In this method, it is important that
all computing resources finish calculating at the
same time.

A lot of procedures such as authentication, au-
thorization and negotiation with the job manager
are required when a job is submitted to a comput-
ing resource, which creates a large overhead. In
conventional schedulers, the user decides the size
of each job, and then all these jobs are submitted
to computing resources sequentially. When there
are many jobs, the overhead becomes large and
the execution becomes time consuming. Our pro-
posed scheduling method decreases the overhead
by minimizing the number of jobs.

In the case where the application is divided into
many small jobs, a new job is submitted to the
computing resource that finishes execution of its
previous one. Thus, the calculation time does not
depend greatly on the performance of the com-
puting resources. However, if the application is
simply split in a number of jobs equal to the to-
tal number of computing resources, without pre-
dicting how much computation each of the jobs
would require, a fast computing resource may re-
ceive a job that will be executed quickly, while the
more intensive jobs go to slower resources. Even

—117-

if the jobs are equally computation-intensive, the
total execution time would depend on the speed of
the slowest computing resource. To avoid these
problems, in the proposed method, the contents
of the meta-jobs are selected after predicting the
performance of each job on each resource. The
goal is to create such meta-jobs that they all finish
at the same time. The details of the performance
prediction are as follows.

(1) A time function f that represents a rela-
tion between the parameters and the running time
has to be found. However, because the parameter
is not necessarily a number, a function g that gives
the representation of the parameter s as a number
has to be found. The function should make sure
thatif g(s1) = g(s2), then when s; or sq is passed
as a parameter the running time of the applica-
tion is the same. Therefore, to determine a proper
function g(s), the source code of the application
may have to be examined.

(2) The general form of the time function f
can be obtained by investigating the running time.
This general form is the same regardless of the
computer resource that the application is executed
on. However, the complete function varies be-
tween computer resources. The exact parameters
of the time function for each computer resource
are determined by executing a sufficient number
of parametric jobs on each computer resource in
the grid computing environment.

For example, if f is a function of a second de-
gree, i.e.,

flz)=az’ +bz +c ¢))

jobs respective to only three points have to be ex-
ecuted on each computer resource. The values for
a,b and c can then be determined from their run-
ning time.

(3) After the function f for each resource
is acquired, a distribution of jobs is determined.
This is done according to the following equation

3 Ala@) = Y Falol@) =D fulgli)
T T (2 (2)

where o; is the set of parameters assigned to the
it" resource. The application is executed on the
basis of these parameters.

The proposed scheduling requires the execu-
tion of a job on the computing resources in or-
der to perform accurate performance prediction
of the resource. Therefore, the proposed method

is not suitable for the case when the application
is not utilized repeatedly, because the calculation
time for the prediction is added to total calcula-
tion cost.

This scheduling method works effectively in a
grid environment that consists of parallel comput-
ers or super computers only or when the computer
resources have no extra load. Parallel comput-
ers have multiple calculation nodes. The job is
basically assigned to an unused calculation node
when a new job is submitted to a parallel com-
puter. Thus, a job can monopolize the utilization
of the CPU. However, this is not possible if there
are other processes on a single processor system.
Processes equally share the CPU.

In the proposed method, the performance of
the computing resources is measured, the predic-
tions are made, and then the real application is
executed. Therefore, the performance of the pro-
posed method could drastically decrease if the
conditions on a computing resource when per-
forming the prediction differ from the conditions
when executing the application. To avoid this
problem, we introduce adaptability to the pro-
posed scheduling method. This way, the method
can be applied in more practical grid computing
environments.

The number of active processes is checked
when measuring the running time of the appli-
cation. The time that it would take to complete
on a single processor system is directly propor-
tional to the total number of competing processes;
i.e. if the time when the CPU is dedicated to the
application is tp, then the time when there are n
competing processes is t, = (n + 1)to. There-
fore, if the number of running processes when
performing the prediction measurements is p, and
the measured time is ¢, m i.e., the time that

would have been measured if there were no other
processes, is used when determining the parame-
ters in Equation (1).

When determining the distribution of jobs,
(pe + 1)f(g(s)) is used instead of f(g(s)) in
Equation (2), where p, is the number of active
processes at the time of execution of the real job.
This change of the equation creates a different
distribution of jobs, respecting the current load.

As mentioned above, the proposed scheduling
method can perform effective execution of a para-
metric application by minimizing the overhead of
job submission, choosing a job size based on per-
formance prediction of the computing resources

—118—

and adjusting the job size on the basis of the cur-
rent load.

4. Computational Experiments

4.1 Experimental Method

We performed computational experiments in
order to confirm the effectiveness of the proposed
scheduling method. The experimental methods
are described below.

The application used in these experiments was
a program for calculating arbitrary hexadecimal
digits of 7 [9]. Its implementation is written in C.
This application accepts as parameters the start-
ing digit and the number of digits for calculation.
In this program, later digits require more calcu-
lation. In the experiment, the first one hundred
thousand hexadecimal digits of m were calcu-
lated. We also compared our proposed scheduling
method with the conventional scheduling meth-
ods described below.

(1) Scheduling Method 1 (M1): ‘The ap-
plication is split in jobs of equal size (equal num-
ber of digits) and the number of jobs is equal to
the number of computing resources.

(2) Scheduling Method 2: The application
is divided in a number of fixed-size jobs, but the
number of jobs is much greater than the number
of computing resources. We employed two differ-
ent job sizes, because job size also has impact on
performance.

e 1000 digits (M2,): A thousand digits of
7 are calculated by each job, i.e., the application
is split in one hundred jobs.

e 2500 digits (M2p): The application is
divided into forty jobs that calculate 2500 digits
each.

The above experiments were performed in ideal
environment, i.e., the computer resources had no
load. Moreover, we performed the following
types of experiments in order to confirm the ef-
fectiveness of the adjustment function based on
the load condition in our proposed scheduling
method:

¢ Experiments with no extra load: In the
experiments there was no extra load on the PCs
both during prediction and real execution.

e Experiments with varying load: In the
experiment, there was some external load on the
PC resource and it was different between the pre-
diction and the real execution of the application.

The load used in the experiments is controlled.
A fixed load is applied when the load generator
program is executed on a computing resource.

In these experiments, we investigated the
elapsed time of execution.

4.2 Experimental Results

The experimental results are shown in Tables 1
and 2. Table 1 represents the experimental results
in the case where there was no load, and Table 2
represents the results using varied load. The data
is the average of ten trials.

In Table 1, M1 is when the application is sim-
ply divided into equally sized pieces. In other
words, this is our method without the prediction.
From the results, it can be concluded that this is
the most unpredictable method. This is due to
the fact that the jobs in this method have different
computational requirements, but they are not dis-
tributed to faster/slower computer resources ac-
cording to these requirements. However, at given
runs even this method did complete the job faster
than any of the M2 methods. Therefore, even
though this method is not predictable, when the
right selection of resources is made, the method
is faster than M2.

By comparing the two M2 methods, the impact
of the job-submission overhead can be seen. M2,
that had 100 jobs was slower than M2, that had
40. Furthermore, there is no easy way of decid-
ing in advance what the job size should be. We
decided to work with job sizes of 1000 and 2500
after performing a few test runs and seeing that
these sizes give the best results. With a job-size
of 5000 the results were becoming unstable, be-
cause at a number of runs the last job had to be
waited for.

Our proposed method showed both stable and
fast results. In other words, there were no unex-
pectedly slow executions and it was always the
faster method of the three. The results are sta-
ble, unlike M1. Therefore, it can be concluded
that the prediction is effective. It performed bet-
ter than the M2 methods, which means that keep-
ing the job in large pieces is effective. However,
with the proposed method, the prediction runs and
determining the time function for the application
take time. This extra time is not required for M1
or M2. On the other hand, if the application is
used frequently, this extra time becomes negligi-
ble when compared to the gain in speed that it
provides. It is our future work to decrease this
extra time.

—119—

Table 1 Accomplished times with no extra load
Time (sec.)
Resources M1 M2, | M2, | Prop.
0* P{ P! |1363~3187] 1477|1596 | 1246
O P 1828~3741 | 1822 | 2135 | 1597

O P, | 1820~4261 | 1966 | 2661 | 1680

P; Py | 3612~4269 | 2851 | 3037 | 2561
*Onyx 300, TP/IIT 1GHz, *P/III 850MHz

Table 2 Accomplished times with varying load
Load at: execution
measure | O 1 2 3

0 1598 | 1912 | 2052 | 2140
1 1615 | 1910 | 2044 | 2150
2 1636 | 1924 | 2050 | 2120
3 1605 | 1952 | 2062 | 2127

Table 2 represents the results when the load
on the computer resource during prediction dif-
fers from the load when the application is exe-
cuted. From this result, it was found that the
remarkable decrease of performance in the pro-
posed method did not occur even if the load con-
dition had changed between prediction and real
execution. If there were no adjustments and the
load on one computer resource had changed, the
calculation time in Table 2 would have been as
follows. If the load at execution was [, i.e., there
were [, processes running on the computer re-
source already, and the load when predicting was
lp, then if [, < [, the running time ¢;, would have
been the same as the time when the load is [, i.e.,
ty,. However, if [> {,, then the time would have

le+1
Tp+l-

that the adjustments were effective.

However, the load for the experiments was arti-
ficially generated by a program that provided con-
stant load. However, in a more practical envifon-
ment, there are different types of load. We have to
confirm the performance of the proposed method
when loads differ. This is our future work.

It can therefore be concluded

been ¢, =,

5. Conclusion

In this paper, we proposed an adaptive schedul-
ing method for the grid computing environment.
We also confirmed its effectiveness through some
computational experiments. From the experimen-
tal results, it was found that the proposed schedul-
ing method can effectively manage the execution
of parametric applications by predicting the per-
formance on each computing resource and by ad-
justing the job size on the basis of load conditions.

The proposed method requires extra time for
predicting the performance on each computing re-
source. Therefore, the conventional scheduling
methods can be more effective when a completely
unknown parametric application is executed for
the first time. However, it is likely that the pro-
posed method will become superior if the time
required for making the predictions can be de-
creased.

In addition, it was confirmed that the proposed
scheduling method also worked effectively even
if the load on a computer resource has changed.
However, in the experiment, we simulated the
change of the condition on a computer resource
by applying a constant load generated by a pro-
gram. Therefore, we also have to investigate the
performance of the proposed method through ex-
periments with various load types. This is our fu-
ture work.

Bibliography

(1] http://www.nas.nasa.gov/About/IPG/ipg.html

[2] R.Rheinheimer, S.L.Humphries, H.P.Bivens,
J.I1Beiriger, The ASCI computational Grid:
Initial Deployment

{31 D.Abramson, J.Giddy, L.Kotler, High Per-
formance Parametric Modeling with Nim-
rod/G: Killer Application for the Global Grid?,
IPDPS’2000, Mexico, IEEE CS Press, USA,
2000

[4] F.Berman, R.Wolski. The AppLeS Project: A
Status Report. 8th NEC Research Symposium,
Berlin, Germany, May 1997. 16

[51 The Anatomy of the Grid: Enabling Scalable
Virtual Organizations. I.Foster, C.Kesselman,
S.Tuecke. International J. Supercomputer Ap-
plications, 15(3), 2001.

[6] Computational Grids., I. Foster, C. Kesselman.
Chapter 2 of “The Grid: Blueprint for a New
Computing Infrastructure”, Morgan-Kaufman,
1999.

[71 1. Foster and C. Kesselman, “Globus: A Meta-
computing Infrastructure Toolkit”, Proceed-
ings of the Workshop on Environments and
Tools for Parallel Scientific Computing, SIAM,
Lyon, France, August 1996

[81 MPICH-G2: A Grid-Enabled Implementation
of the Message Passing Interface. N. Karonis,
B. Toonen, and I. Foster. Journal of Parallel and
Distributed Computing, 2003.

[91 D.H.Bailey, D.Broadhurst,Y.Hida and Xiaoye
S. Li, “High Performance Computing Meets
Experimental Mathematics”, 2002

[10] The Network Weather Service: A Distributed
Resource Performance Forecasting Service for
Metacomputing, R. Wolski, N. Spring, J.
Hayes, Journal of Future Generation Comput-
g Systems, Volume 15, Numbers 5-6, pp.
757-768, October, 1999. v

—120—-

