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Abstract: Nx is a multi-dimensional tensor library for Elixir with multi-staged compilation
to the CPU or GPU, similar to NumPy and TensorFlow in Python. Nx is expected to be ap-
plied in image processing and machine learning. Code used by image processing and machine
learning in C or C++ is often optimized for CPUs into native code with SIMD instructions.
In this paper, we will show that native code with SIMD instructions is 1000x+ faster than
equivalent Elixir code with Nx, to evaluate future possibilities and effectiveness of such code
generation and optimization. Our future works are to implement and evaluate our proposal:
a backend of Nx generating SIMD instructions by NIFs and/or BeamAsm using our compiler
and/or OpenBLAS or cuBLAS.
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1. Introduction

Nx [14] is a multi-dimensional tensor library for

Elixir [13] with multi-staged compilation to the

CPU or GPU, similar to NumPy [11] and Tensor-

Flow [5] in Python [15]. Nx is expected to be ap-

plied in image processing and machine learning.

Code used by image processing and machine

learning in C or C++ is often optimized for CPUs

into native code with SIMD instructions or on GPU.

Nx has such a backend, named EXLA [8], which

calls Google XLA [6] and generates such code just

in time or ahead of time.

We have developed Pelemay [1, 17–19, 23–26] *1,

1 Univ. of Kitakyushu, Kitakyushu, Fukuoka 808–
0135, Japan

a) zacky@kitakyu-u.ac.jp
This paper is a compilation of an already pub-
lished oral presentation of the same name [22].

*1 Hastega is an old name of Pelemay and a name of
magic spell that appeared in the Final Fantasy se-
ries.

a native compiler for Elixir, which generates SIMD

instructions, and PelemayFp [20], a Fast parallel

map function for Elixir. Especially, Pelemay can

compile Elixir code into native code with SIMD in-

structions just in time, so we guess it can also be

applied to Nx.

This paper will show that native code with SIMD

instructions written by hands is more than 1000

times, 9 times, and 1.7 times faster than equivalent

Elixir code with Nx, CPU native code generated by

EXLA, and GPU code keep running on it generated

by EXLA, respectively, to evaluate future possibil-

ities and effectiveness of such code generation and

optimization.

The rest of this paper consist of the following sec-

tions: Section 2 will describe prerequisite elemen-

tal technologies, Pelemay, Nx and BeamAsm. Next,

Section 3 will propose our approach. Moreover, Sec-

tion 4 will show the preliminary experiments of it.

Last, Section 5 will summarize this paper and show



defn softmax ( t ) do
Nx. exp ( t ) / Nx . sum(Nx . exp ( t ) )

end

Fig. 1: Sample code of Nx

the future works.

2. Nx

Nx [14] and EXLA [8] have not been officially

released as of October 2021, and the pre-release

version of their development has been released on

GitHub.

Nx has the following nine functions, which are

similar to NumPy [11] and TensorFlow [5]: Aggre-

gates, backend, conversion, creation, element-wise,

N-dim, shape, type, and others. Fig. 1 shows

the sample code of Nx, which implements the Soft-

max function. In this code, t expresses a tensor.

Nx.exp(t) returns a tensor, of which each element

has a value of an exponential of the corresponding

element of a tensor t. Nx.sum(t) returns the sum

for a tensor t.defn defines a numerical function, a

subset of Elixir tailored for numerical computation

using Nx.

EXLA is a backend of Nx, which can com-

pile numerical functions just in time or ahead of

time for CPU, GPU and TPU. Another backend

is Nx.BinaryBackend, which is an opaque backend

written in pure Elixir that stores the data in Elixir’s

binaries. This is the default backend used by the Nx

module. A programmer can define any backend of

Nx.

3. Proposed Approach

Pelemay [1, 17–19, 23–26] has a function to com-

pile Elixir code using Enum.map with simple arith-

metic operations into native code with SIMD in-

structions using auto-vectorization of Clang and

GCC, just in time. It also has the potential to opti-

mize a series of operations into an integrated native

code.

EXLA and Pelemay use Native Implemented

Functions (NIFs) [3], functions that are imple-

mented in C instead of Erlang [2] or Elixir. We

found by experiments of a combination of Pelemay

and PelemayFp [20] that a CPU-bound function

implemented in NIFs is often slower than Elixir

or Erlang code compiled into native code by Bea-

mAsm [4], a JIT of Erlang. So then, we expect

BeamAsm will be a good code generator for Pele-

may and Nx and a good alternative FFI instead of

NIFs [21].

Almost Nx functions can be compiled into oper-

ations of OpenBLAS [16] because they are linear

algebra functions. Because OpenBLAS is the state-

of-the-arts implementation to realize linear algebra

functions in open-source software, it may be one of

the fastest implementations of Nx. cuBLAS [10] is

Basic Linear Algebra using CUDA [9], so it may

also be one of the fastest implementations of Nx.

Thus, we propose implementing an Nx backend

to compile pre-defined numerical functions into na-

tive code, including SIMD instructions. Its com-

pilation technology may be SIMD code generation

by auto-vectorization in GCC or Clang or our com-

piler, or BLAS code generation calling OpenBLAS

or cuBLAS. Moreover, FFI technology may be NIFs

or code generation by BeamAsm. Fig. 2 shows its

structure.

Our approach is expected to achieve much effi-

ciency of operations of tensors by Nx, by optimiza-

tion of native code, and by elimination of overhead

of FFI.

4. Preliminary Experiments

We conduct the preliminary experiments of

our approach, the monochrome filter bench-

marks*2. They process 65536 RGB 8-bit pixels

into monochrome.

We implement the monochrome filter using Nx,

C, hand-coded intrinsics of ARM NEON (with and

without pipelining), and OpenCV [7], which uses

OpenBLAS [16]. We implement that using C and

hand-coded intrinsic using NIFs with transform-

ing between Nx.Tensor, which expresses a matrix

in Nx, and uint8 t, which is an 8-bit unsigned

int. We also implement that using OpenCV us-

ing NIFs with transforming between Nx.Tensor and

cv::Mat, which express a matrix in OpenCV.

The hand-coded intrinsics have a series of pro-

cesses: Load multiple 3-element structures that

have the 8bit RGB values to three registers, extend

*2 This is available at https://github.com/zacky1972/
monochrome_filter. The version used in the experi-
ments is 0.2.0.



Fig. 2: The structure of the proposed approach

8bit into 16bit, extend 16bit into 32bit, convert an

integer into a float, multiply, addition, convert a

float into an integer, reduce 32bit into 16bit, re-

duce 32bit into 8bit, and store multiple 3-element

structures from three registers.

The benchmarks are implemented using Benchee

[12], which runs each kernel for a specified number

of seconds after warming up, measures the iteration

number, and shows the results of the iterations per

second, average execution time, standard deviation,

median of the execution time, 99th percentile, and

memory usage.

We evaluate it on Apple M1 Mac and NVIDIA

Jetson AGX Xavier shown in Table 1. We use them

because their CPU is ARMv8, an architecture for

which we implemented intrinsics of the benchmark.

The results of the average execution time of the

benchmarks on Apple M1 Mac mini (M1, 2020) us-

ing Clang 13.0.0 and NVIDIA Jetson AGX Xavier

using Clang 13.0.0 and GCC 11.2 are shown in Ta-

ble 2, 3 and 4.

The source code of Nx is shown in Fig. 3. The

items of xla are using EXLA, whose source code

is the same as Nx. Next, Nx on Apple M1 Mac

of 32bit is approximately the same as that of 16bit.

Next, EXLA on CPU on Apple M1 Mac of 16bit and

32bit is 525 and 541 times faster than Nx, respec-

tively. So the difference between 16bit and 32bit

is tiny. The reason is probably that the operation

in the case of 16bit includes converting 16bit into

32bit, operating in 32bit, and converting 32bit into

16bit.

Nx on NVIDIA Jetson AGX Xavier on 32bit is

also approximately the same as that of 16bit. Next,

EXLA on CPU on NVIDIA Jetson AGX Xavier on

16bit and 32bit is 352–400 and 381–410 times faster

than Nx. Though the difference between 16bit and

32bit is tiny, the effectiveness of EXLA on Mac is

1.38 times larger than that on Jetson. The reason

for the difference between Mac and Jetson is prob-

ably the difference in processor architecture.

EXLA on GPU on Jetson of 16bit and 32bit is

756–793 and 846–888 times faster than Nx, respec-

tively. Next, EXLA on GPU with keeping the mem-

ory on the GPU on Jetson of 16bit and 32bit is

3297–3380 and 3321–3391 times faster than Nx, re-

spectively. So the effectiveness of keeping is 4.08.

Consequently, the key to speeding up using GPU is

keeping. Moreover, GPU in the case of keeping is

8.68 times faster than CPU, so the effectiveness of

GPU is this. These results and discussion explain

the effectiveness of the existing approach.

The 16bit and 32bit NIFs on Mac are 2690 and

2689 times faster than Nx, respectively. Moreover,

they on Jetson using Clang is 3652 and 3813 times

faster than Nx. This effectiveness is approximately

the same as GPU with keeping. Further, they on

Jetson using GCC is 2676 and 5445 times faster

than Nx. That of 32bit on Jetson using GCC is 1.43

times faster than that using Clang. The difference is

caused by the effectiveness of the auto-vectorization

of GCC. The difference is ununderstandable from

the code because both Clang and GCC seem to gen-

erate SIMD instructions with auto-vectorization.



Table 1: Environment of the experiments
Apple Mac mini (M1, 2020) NVIDIA Jetson AGX Xavier

CPU M1 NVIDIA Carmel Armv8.2
Cores of CPU 4 e-Cores and 4 p-Cores 8 Cores
CPU max clock 2.064GHz 2.2656GHz
fp16 available N/A
GPU M1 (8 cores) 512 NVIDIA CUDA Cores and 64 Tensor Cores
OS macOS Big Sur 11.6 Linux kernel 2.9.253-tegra
Clang 13.0.0 13.0.0
GCC N/A 11.2
Erlang 24.1.2 24.1.2
Elixir 1.12.3–otp–24 1.12.3–otp–24

Table 2: The results of the average execution time

of the benchmarks using Clang 13.0.0 on Apple M1

Mac mini (M1, 2020)
16bit (µs) 32bit (µs)

Nx 110237.64 112762.66
xla JIT CPU 209.82 208.39
NIF 40.98 41.94
NIF intrinsics 23.49 22.72
NIF intrinsics w/ pipeline N/A 23.07
OpenCV CPU N/A 12.90

Table 3: The results of the average execution time

of the benchmarks using Clang 13.0.0 on NVIDIA

Jetson AGX Xavier)
16bit (µs) 32bit (µs)

Nx 422103.85 442101.99
xla JIT CPU 1197.53 1161.17
xla JIT GPU 558.63 522.83
xla JIT GPU keep 128.03 133.11
NIF 115.59 115.94
NIF intrinsics N/A 79.81
NIF intrinsics w/ pipeline N/A 79.65
OpenCV CPU N/A 59.64
OpenCV GPU N/A 72.74

Table 4: The results of the average execution time

of the benchmarks using GCC 11.2 on NVIDIA Jet-

son AGX Xavier)
16bit (µs) 32bit (µs)

Nx 421708.27 435458.64
xla JIT CPU 1053.86 1060.92
xla JIT GPU 531.67 490.52
xla JIT GPU keep 124.77 128.41
NIF 157.60 79.97
NIF intrinsics N/A 80.28
NIF intrinsics w/ pipeline N/A 82.99
OpenCV CPU N/A 59.31
OpenCV GPU N/A 70.96

Table 5 shows the part of the result of LLVM Ma-

chine Code Analyzer (llvm-mca) of them on Apple

Mac mini (M1, 2020) on Clang 13.0.0 and GCC

11.2 compiled by NVIDIA Jetson AGX Xavier*3.

*3 The reason that we use Mac instead of Jetson is that

Table 5: The part of the results of LLVM Machine

Code Analyzer of NIF on Apple Mac mini (M1,

2020) on Clang 13.0.0 and GCC 11.2 compiled by

NVIDIA Jetson AGX Xavier
Clang 13.0.0 GCC 11.2

Iterations 100 100
Instruction 43,400 42,600
Total Cycles 17,139 23,545
Total uOps 51,600 456,000
Dispatch Width 6 6
IPC 2.53 1.94
Block RThroughput 93.0 76.0

Unlike the execution time, the IPC of Clang is 1.3

times larger than that of GCC. Moreover, IPC cor-

responds to the utilization of ALU. Then, we guess

that IPC from LLVM Machine Code Analyzer may

be an index of optimization by Clang. Because the

results of IPC are opposed to the actual execution

time in the case of our benchmarks, Clang cannot

compile them into efficient native code.

The code of NIF intrinsics of 16bit cannot run

on Jetson because NVIDIA Carmel Armv8.2 does

not support fp16 NEON instructions (See Table 1).

NIF intrinsics of 16bit and 32bit on Mac are 4693

and 4963 times faster than Nx. Moreover, these are

1.74 and 1.85 times faster than NIF. These are the

difference between auto-vectorization by Clang and

intrinsics. Actually, NIF with auto-vectorization by

GCC is approximately the same as NIF intrinsics.

NIF intrinsics of 16bit and 32bit on Mac are 8.93

and 9.17 times faster than xla JIT CPU. NIF in-

trinsics of 32bit compiled by Clang and GCC on

Jetson are 5539 and 5445 times faster than Nx, re-

spectively. Though that compiled by Clang is 1.45

times faster than NIF, that compiled by GCC is

as fast as NIF compiled by GCC. NIF intrinsics of

we cannot prepare LLVM Machine Code Analyzer on
Jetson.



32bit on Jetson are 13.9 times faster than xla JIT

CPU. These show the potential in case that we will

implement simple code generation, including SIMD

instructions. It is also 1.7 times faster than xla JIT

GPU keep.

Next, the execution time of NIF intrinsics with

the pipeline is approximately the same as that of

NIF intrinsics. These show that simple software

pipelining may not be effective to M1 and Carmel

Armv8.2, CPUs with out-of-order execution.

OpenCV CPU on Mac and Jetson is 8741 and

6108 times faster than Nx, respectively. Moreover,

they are 1.76 and 1.35 times faster than NIF in-

trinsics, respectively. Therefore, they may be the

best optimization case of ARM CPU. OpenCV uses

OpenBLAS to calculate matrix operations. Prac-

tically, an operation on Nx can be compiled into

operations on OpenBLAS. THerefore, to estimate

the best optimization case of Nx, we should evalu-

ate such operations on OpenBLAS. This evaluation

remains as future work.

OpenCV GPU on Jetson is 1.21 times slower than

OpenCV CPU. The reason for this is that the im-

age size of this benchmark is relatively small, which

is only 65536 pixels.

5. Summary and Future Works

We proposed implementing an Nx backend to

compile pre-defined numerical functions into native

code, including SIMD instructions. Its compila-

tion technology may be SIMD code generation by

auto-vectorization in GCC or Clang or our com-

piler, or BLAS code generation calling OpenBLAS

or cuBLAS. Moreover, FFI technology may be NIFs

or code generation by BeamAsm. Our approach is

expected to achieve much efficiency of operations of

tensors by Nx, by optimization of native code, and

by elimination of overhead of FFI. We also showed

that our approach might hopefully be competitive

against EXLA by conducting the preliminary ex-

periments.

Our future works are to implement and evaluate

our proposal: a backend of Nx generating SIMD

instructions by NIFs and/or BeamAsm using our

compiler and/or OpenBLAS or cuBLAS.
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defmodule MonochromeFilter do
import Nx. Defn

defn t r an spo s e v e c t o r ( vec to r ) do
Nx. reshape (

vector ,
{Nx. s i z e ( vec to r ) , 1}

)
end

defn broadca s t ve c to r (
vector ,
shape tenso r

) do
vec to r
|> t r an spo s e v e c t o r ( )
|> Nx. broadcast ( shape tenso r )

end

defn monochrome f i l t e r 32 ( p i x e l ) do
a s s e r t s h ap e pa t t e r n p ixe l , { , 3}

mono = Nx . t enso r (
[ 0 . 2 9 9 , 0 . 587 , 0 . 1 1 4 ] ,
type : { : f , 32}

)

p ixe l m = Nx. dot ( p ixe l , mono)

b roadca s t ve c to r ( pixel m , p i x e l )
|> Nx. round ( )
|> Nx. as type ( { : u , 8})

end

defn monochrome f i l t e r 16 ( p i x e l ) do
a s s e r t s h ap e pa t t e r n p ixe l , { , 3}

mono = Nx . t enso r (
[ 0 . 2 9 9 , 0 . 587 , 0 . 1 1 4 ] ,
type : { : f , 16}

)

p ixe l m = Nx. dot ( p ixe l , mono)

b roadca s t ve c to r ( pixel m , p i x e l )
|> Nx. round ( )
|> Nx. as type ( { : u , 8})

end

defn i n i t p i x e l ( ) do
Nx. t enso r (

[ 0 x9f , 0x5a , 0xae ] ,
type : { : u , 8}

)
|> broadca s t ve c to r (

Nx . i o t a ({3 , 65536})
)
|> Nx. t ranspose ( )

end

defn i n i t r andom p ix e l ( ) do
Nx. random uniform ({65536 , 3})
|> Nx. mult ip ly (255)
|> Nx. round ( )
|> Nx. as type ( { : u , 8})

end
end

Fig. 3: Source code of the monochrome filter in

Elixir and Nx


