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A new interpretation will be made on the so-called non-restoring 

method for division and some applications will be introduced that are 
enabled by this interpretation.  As opposed to the conventional inter- 
pretation of the non-restoring method which shifts the partial remainder 
left, this interpretation shifts the divisor right thus avoiding the overflow of 
the partial remainder.  This interpretation is independent of the handling 
of the most significant bit of the partial remainder which differs from 
machine to machine.  Moreover, the choice of addition or subtraction at 
each stage can be done based on the sign of the current partial remainder, 
not on the sign of the previous partial remainder.  This simplifies the 
division process and eliminates mistakes when simulated on the desk.  The 
sign-extended right shift of the divisor can be always done a priori without 
the knowledge of the current partial remainder.  This enables the parallel 
operations of the addition/subtraction and divisor shift which has been 
unfeasible by the conventional interpretation in which addition or 
subtraction could be chosen only after the left shift of the partial remainder.  
The results help the better understanding of the algorithm and suggest a 
possible improvement in the speed of arithmetic operations. 

 
1. Introduction 
     Conventionally, the non-restoring 
method for the division has been done in 
the sequence of the processes which are 
shown below [1], [2]. 
(1) The signs of the dividend C and the 

divisor D ( hereinafter C and D ) are 
compared.  If they are of opposite 
signs, addition C + D is performed, 
whereas subtraction C – D is perform- 
ed if they are of the same sign.  The 
result of the addition or subtraction 
will be the initial value of the partial 
remainder R ( hereinafter R ). 

(2) If the sign of R is opposite to that of C, 
division is feasible, otherwise the case 
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is division overflow. 

(3) If the division is feasible, the signs of 
R and D are compared.  If the signs 
are the same, R is shifted left and D is 
subtracted from R.  A 1 is assigned to 
the least significant bit of the 
quotient Q ( hereinafter Q ).  If the 
signs are opposite, D is added to R 
instead of being subtracted after R is 
shifted left.  A 0 is assigned to the 
least significant bit of Q.  This 
process is repeated for all bits. 

(4) The sign of R is compared with the 
sign of D.  If they are of the same sign, 
adjustment of R is not necessary and 1 
is assigned to the least significant bit 
of Q.  If they are of opposite signs, 
adjustment is made adding D to R and 
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0 is assigned to the least significant 
bit of Q. 

(5) R is shifted right by the number of bits 
to compensate for the effect of left 
shift at each process. 

 
     This interpretation of the non- 
restoring method used to have signif- 
icance when only a limited hardware was 
available.  Each of the newly obtained 
bits of Q could be stuffed into the lower 
part of R which was evacuated by the left 
shift to save the number of flip flops [3].  
However, it has the following short- 
comings. 
(1) There will be overflow of R when it is 

shifted left if the most significant two 
bits are 01 or 10, which means that 
the absolute value of R is too large to 
be doubled. 

(2) In some CPUs, left shift is performed 
preserving the most significant bit of 
R to avoid the change of sign instead 
of shifting it with all the other bits.  
In such case, the information of the 
absolute value of R is lost and the 
further operations are meaningless. 

(3) Subtraction or addition is chosen 
based on the comparison of the signs 
of R and D before shifting R left, but is 
performed after the left shift.  To 
facilitate this, the sign of R before the 
left shift must be preserved.  This 
can cause confusion at desk simula- 
tion and also complicates the hard- 
ware. 

(4) Additional operation of shifting R 
right for remainder compensation 
causes increase in execution time. 

 
2. New Interpretation 
     To avoid those shortcomings, we 
introduce another interpretation of the 
non-restoring method.  Here the follow- 
ing assumptions are made. 

(1) C and R consist of 2 n + 1 bits includ- 
ing the sign.  The final values of D 
and Q will consist of n+1 bits.  Each 
number, represented by N, is expres- 
sed in 2’s complement. 

(2) The decimal point of a number is 
placed at the right side of the most 
significant bit.  This means that a 
number N satisfies + 1 > N ≧ – 1. 

 
     The whole processes of the new 
interpretation are executed as shown 
below. 
(1) Q is expressed as qn.qn-1qn-2…q1q0.  Its 

value can be expressed as 
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All digits in Q are not determined 
prior to division.  In order that divi- 
sion is feasible with no overflow, + 1 > 
C/D ≧ – 1 must hold.  Compare the 
signs of C and D.  If they are of oppo- 
site signs, addition C + D is performed, 
whereas subtraction C – D is perform- 
ed if they are of the same sign.  The 
result of the addition or subtraction 
will be the initial value of R.  If the 
sign of R is opposite to that of C, 
division is feasible.  Otherwise the 
case is division overflow.  Assuming a 
formal bit qn+1 above the most signif- 
icant bit qn. with the values qn+1 = 0 for 
addition and qn+1 = 1 for subtraction, 
these operations can be uniformly 
recognized as 

  )21( 1+−+= nn qDCR     (2) . 

(2) If the division is feasible, D is sign- 
extended and shifted right and the 
signs of R and D are compared.  If 
they are of the same sign, D is 
subtracted from R and 1 is assigned to 
the least significant bit of Q.  If they 

島貫
テキストボックス
－134－



are of opposite signs, D is added to R 
instead of being subtracted from R 
and 0 is assigned to the least signi- 
ficant bit of Q.  This process is 
repeated for all bits.  That is 

   1
1 2)21( −+−
− •−+= in

iii qDRR     (3) 

                 ( i = n, n - 1, … , 1 ) . 
 
(3) The sign of R is compared with the 

sign of D.  If they are of the same sign, 
adjustment is not necessary for R and 
then 1 is assigned to the least signif- 
icant bit of Q.  If they are of opposite 
signs, adjustment of R is necessary.  
D is added to R and then 0 is assigned 
to the least significant bit of Q. 

 
  start division 
 
                    Rn = C – D 

  compare   = 

  signs of 

  C and D   ≠ 

                    Rn = C + D 
  overflow 
  check              overflow break 
  sign        no 

reversed ?  yes 

 

              shift D right 

                       =   Ri-1 = Ri – D 

  for i = n     compare        qi = 1 
  down        signs of 

  to 1         Ri and D     Ri-1 = Ri + D 

                       ≠    qi = 0 
 
                     q0 = 1 
  compare     =     remainder 
  signs of R0         adjustment 
  and D       ≠     q0 = 0 
                     R0 = R0 + D 
  end division  

 
Figure 1.  Division Sequence 

     The overall sequence of processes is 
shown on Figure 1. 

The difference of this interpretation 
from the previous one is that the addition 
or subtraction is chosen and performed 
based on the signs of R and D after the 
shift operation at each stage.  Another 
difference is that D is shifted right in- 
stead of shifting R left.  This interpreta- 
tion can be proven by summing up the 
formulae (2) and (3) for i = n, n - 1, … , 1. 
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is obtained.  Moving terms from one side 
to the other, (4) can be expressed as 
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(5). 
 
Regarding the terms in the braces on the 
right side as Q, (5) corresponds to the 
general expression of division, the 
dividend equals the product of the divisor 
and the quotient plus the remainder.  In 
order that R0 is qualified as the remainder, 
∣2-nD∣>∣R0∣, that is ( 2-nD ) 2 > R0

2 must 
hold.  This is a special case for 

 
 ( 2-n+i D ) 2 > R i 

2       (6) 
 

               ( i = n, n - 1, … , 1, 0 ), 
 
which can be proven by mathematical 
reduction.  The case i = n can be proven 
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since the condition + 1 > C/D ≧ – 1 is 
already verified at the process (1) and Rn 
obtained by the process (2) satisfies D 2 > 
Rn

2 .  For i = n –1, … , 1, 0, 
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Applying the relation (3), the left side of 
(7) is equal to: 

     )2( DRR in
ii

+−−  < 0 

     for subtraction ( qi = 1 ) 

and )2( DRR in
ii

+−+  < 0 

         for addition ( qi = 0 ). 
 
Thus the relation (6) holds and accord- 
ingly the relations ( 2-nD ) 2 > R0

2 and 
∣2-nD∣>∣R0∣ hold. 

This is not a new algorithm for 
division but only a different interpreta- 
tion of the well-known non-restoring 
method.  The right-shift of D used to be 
commonly adopted at an early stage of 
computer arithmetic, when the compari- 
son method or restoring method was 
widely used.  In another word, this 
interpretation was inspired by the tradi- 
tional method of division. 

This interpretation has the follow- 
ing merits as compared with the conven- 
tional one.  
(1) The left shift of R or any other operand 

is not involved during the processes.  
Accordingly there can be no liability of 
overflow. 

(2) Avoidance of left shift guarantees the 
independence of the algorithm from 
the CPU architectures which differ in 
the treatment of the most significant 
bit at left shift. 

(3) The choice and performing of addition 
or subtraction of R and D are done 
based upon the current status of the 
signs of R. 

3. Numerical Examples 
     We verify this interpretation with 
two numerical examples.  The value of n 
is assumed to be 4.  Accordingly the divi- 
dend C and remainder R consist of 9 bits.  
The initial divisor D consists of 5 bits and 
will be sign-extended during the opera- 
tion and the final number of bits will be 9.  
The quotient Q is not determined yet but 
5 bits result is expected.  All numbers 
are expressed in 2’s complement.  We 
verified these examples with a CASLⅡ 
assembler program. 
Example 1 
 dividend: C = 0.01101001 = 105/256 
 divisor: D = 1.0101 = –11/16 
 – divisor: – D = 0.1011 = 11/16 

operations processes 

0.01101001 
+)1.0101 
  1.10111001 

= –71/256= R4 

opposite sign, 
addition, R4 = C + D 
sign reversed, 
division feasible 

  1.10111001 
+)0.01011 
  0.00010001 
  = 17/256 = R3 

shift D right, 
same sign, q4 = 1 
subtraction 
R3 = R4 – D 

  0.00010001 
+)1.110101 
  1.11100101 
  = –27/256 = R2 

shift D right, 
opposite sign, q3 = 0 
addition, 
R2 = R3 + D 

  1.11100101 
+)0.0001011 
  1.11111011 
  = –5/256 = R1 

shift D right, 
same sign, q2 = 1 
subtraction, 
R1 = R2 – D 

  1.11111011 
+)0.00001011 
  0.00000110 
  = 6/256 = R0 

shift D right, 
same sign, q1 = 1 
subtraction, 
R0 = R1 – D 

The signs of R0 and D oppose.  Remain- 
der adjustment needed.  q0 = 0 
R0 = R0 + D = 0.00000110 + 1.11110101 
= 1.11111011 = –5/256 Q = 1.0110 = –10/16 
This result is verified as 
105/256 = (–10/16)( – 11/16) –5/256 
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Example 2 
 dividend: C = 1.10100010 = –94/256 
 divisor: D = 1.0011 = –13/16 
 – divisor: – D = 0.1101 = 13/16 

operations processes 

1.10100010 
+)0.1101 
  0.01110010 

= 114/256= R4 

same sign, 
subtraction, 
R4 = C – D 
sign reversed, 
division feasible 

  0.01110010 
+)1.10011 
  0.00001010 
  = 10/256 = R3 

shift D right, 
opposite sign, q4 = 0 
addition 
R3 = R4 + D 

  0.00001010 
+)1.110011 
  1.11010110 
  = –42/256 = R2 

shift D right, 
opposite sign, q3 = 0 
addition, 
R2 = R3 + D 

  1.11010110 
+)0.0001101 
  1.11110000 
  = –16/256 = R1 

shift D right, 
same sign, q2 = 1 
subtraction, 
R1 = R2 – D 

  1.11110000 
+)0.00001101 
  1.11111101 
  = –3/256 = R0 

shift D right, 
same sign, q1 = 1 
subtraction, 
R0 = R1 – D 

The signs of R0 and D coincide.  Re- 
mainder adjustment not needed.  q0 = 1 
R0 = 1.11111101 = –3/256  
Q = 0.0111 = 7/16  
This result is verified as 
–94/256 = (–13/16)( 7/16) –3/256. 
 
4. Extensions and Applications 
 4.1 Extended Binary Expression 
     Before discussing on the application 
to SRT method, we verify that this inter- 
pretation holds also for the extended 

binary expression, which permits 11 −=  

as well as 1 and 0 for the bits qi’s of the 
quotient.  In addition to that, we assume 
the most significant bit qn+1 , which is 
determined by the first step to check the 

division feasibility.  The values for qi’s 

are 1  when C and D (or Ri) are of oppo- 

site signs and 1 when C and D (or Ri) are 
of the same sign.  The quotient is 
obtained as qn+1.qnqn-1…q2q1 instead of 
qn.qn-1qn-2…q1q0.  The examples in the 
chapter 3 can be recognized as: 
Example 1: 

qn+1.qnqn-1…q2q1= 0111.11111.1 =  or 0110.1  

Example 2: 

qn+1.qnqn-1…q2q1= 0111.01111.1 =   

 4.2 SRT Method 
     Applying SRT method to Example 2, 
we can obtain the result:  

operations processes 

1.10100010 
+)0.1101 
  0.01110010 

= 114/256= R4 

110 same sign, 
subtraction, 
R4 = C – D, q5 = 1 
sign reversed, 
division feasible 

  0.01110010 
+)1.10011 
  0.00001010 
  = 10/256 = R3 

011 opposite sign, 
addition, R3 = R4 + D 
 
q4 = 1 

  0.00001010 
  = 10/256 = R2 

000 no operation, 
q3 = 0 

  0.00001010 
+)1.1110011 
  1.11110000 
  = –16/256 = R1 

001 same sign,  
subtraction, 
R1 = R2 – D,  q2 = 1 
 

  1.11110000 
+)0.00001101 
  1.11111101 
  = –3/256 = R0 

100 same sign, 
subtraction, 
R0 = R1 – D 
q1 = 1 

Q = 1101.1 == 0.0111= 7/16 

     Here we examined the leading 3 bits 
of Ri at each process.  The “leading 3 
bits” means the most significant 3 bits 
excluding the extended sign bits desig- 
nated by boxes in the tables.  Accord- 
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ingly, they consist of a single sign bit and 
two numerical bits.  If they are 111 or 
000, the absolute value of Ri is less than 
2–n+i–1.  Addition or subtraction is not 
performed and only D is shifted right. 
The carry propagation to the extended 
sign bits is not necessary for the SRT 
method or non-restoring method since the 
carry needs only be copied from the sign 
bit to the higher bits.  The Robertson’s 
diagrams for the non-restoring method 
and SRT method are shown on Figure 2. 
 
                 Ri–1=Ri – 2–n+i–1D qi 

 
 

( a ) Non-restoring method 
 
               Ri–1=Ri – 2–n+i–1D qi 

 
 

( b ) SRT method 
 

Figure 2.  Robertson’s Diagrams 

 
4.3 Application to Parallelism 
     This interpretation is well-suited 
for parallel high speed division through 
quotient bits prediction.  The shifted 
results of D are obtained a priori and 
accordingly the next addition and sub- 

traction can be initiated before the 
current operation is completed.  Depend- 
ing on the result of the current operation, 
either one of sum or difference is adopted 
as the result of the next operation.  This 
overlapping of successive operations can 
be applied multiply. 
4.4 Educational Aspects 
     The avoidance of left shift prevents 
overflow of Ri or loss of sign bits.  
Addition or subtraction ( or even no 
operation ) can be chosen based on the 
result of shift instead of the sign of Ri 
before the left shift.  The right shift of R0 

is unnecessary.  These points eliminate 
machine dependence and unnecessary 
confusions in the process of under- 
standing the algorithmic principles. 
 
5. Conclusions 
     We introduced and proposed a new 
interpretation of the non-restoring meth- 
od for division.  As the result, a new 
horizon of applications and education 
emerged.  A similar aspect is adopted 
also in recent works [4].  Extension and 
application to higher-radix division or 
pipelining can be feasible. 
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