
A New Interpretation of the Non-restoring

Method and Some Applications

Hatsuhiko Kato †

A new interpretation will be made on the so-called non-restoring

method for division and some applications will be introduced that are
enabled by this interpretation. As opposed to the conventional inter-
pretation of the non-restoring method which shifts the partial remainder
left, this interpretation shifts the divisor right thus avoiding the overflow of
the partial remainder. This interpretation is independent of the handling
of the most significant bit of the partial remainder which differs from
machine to machine. Moreover, the choice of addition or subtraction at
each stage can be done based on the sign of the current partial remainder,
not on the sign of the previous partial remainder. This simplifies the
division process and eliminates mistakes when simulated on the desk. The
sign-extended right shift of the divisor can be always done a priori without
the knowledge of the current partial remainder. This enables the parallel
operations of the addition/subtraction and divisor shift which has been
unfeasible by the conventional interpretation in which addition or
subtraction could be chosen only after the left shift of the partial remainder.
The results help the better understanding of the algorithm and suggest a
possible improvement in the speed of arithmetic operations.

1. Introduction
 Conventionally, the non-restoring
method for the division has been done in
the sequence of the processes which are
shown below [1], [2].
(1) The signs of the dividend C and the

divisor D (hereinafter C and D) are
compared. If they are of opposite
signs, addition C + D is performed,
whereas subtraction C – D is perform-
ed if they are of the same sign. The
result of the addition or subtraction
will be the initial value of the partial
remainder R (hereinafter R).

(2) If the sign of R is opposite to that of C,
division is feasible, otherwise the case

†Department of Information Science,
 Shonan Institute of Technology

is division overflow.

(3) If the division is feasible, the signs of
R and D are compared. If the signs
are the same, R is shifted left and D is
subtracted from R. A 1 is assigned to
the least significant bit of the
quotient Q (hereinafter Q). If the
signs are opposite, D is added to R
instead of being subtracted after R is
shifted left. A 0 is assigned to the
least significant bit of Q. This
process is repeated for all bits.

(4) The sign of R is compared with the
sign of D. If they are of the same sign,
adjustment of R is not necessary and 1
is assigned to the least significant bit
of Q. If they are of opposite signs,
adjustment is made adding D to R and

研究会temp
長方形

島貫
テキストボックス
社団法人　情報処理学会　研究報告IPSJ SIG Technical Report

島貫
テキストボックス
2005－ARC－164（23）　2005／8／4

島貫
テキストボックス
－133－

0 is assigned to the least significant
bit of Q.

(5) R is shifted right by the number of bits
to compensate for the effect of left
shift at each process.

 This interpretation of the non-
restoring method used to have signif-
icance when only a limited hardware was
available. Each of the newly obtained
bits of Q could be stuffed into the lower
part of R which was evacuated by the left
shift to save the number of flip flops [3].
However, it has the following short-
comings.
(1) There will be overflow of R when it is

shifted left if the most significant two
bits are 01 or 10, which means that
the absolute value of R is too large to
be doubled.

(2) In some CPUs, left shift is performed
preserving the most significant bit of
R to avoid the change of sign instead
of shifting it with all the other bits.
In such case, the information of the
absolute value of R is lost and the
further operations are meaningless.

(3) Subtraction or addition is chosen
based on the comparison of the signs
of R and D before shifting R left, but is
performed after the left shift. To
facilitate this, the sign of R before the
left shift must be preserved. This
can cause confusion at desk simula-
tion and also complicates the hard-
ware.

(4) Additional operation of shifting R
right for remainder compensation
causes increase in execution time.

2. New Interpretation
 To avoid those shortcomings, we
introduce another interpretation of the
non-restoring method. Here the follow-
ing assumptions are made.

(1) C and R consist of 2 n + 1 bits includ-
ing the sign. The final values of D
and Q will consist of n+1 bits. Each
number, represented by N, is expres-
sed in 2’s complement.

(2) The decimal point of a number is
placed at the right side of the most
significant bit. This means that a
number N satisfies + 1 > N ≧ – 1.

 The whole processes of the new
interpretation are executed as shown
below.
(1) Q is expressed as qn.qn-1qn-2…q1q0. Its

value can be expressed as

∑ ∑
−

=

−

=

−+−+− ++−=+−=
1

0

1

1
0222

n

i

n

i

n
i

in
ni

in
n qqqqqQ

 (1) .
All digits in Q are not determined
prior to division. In order that divi-
sion is feasible with no overflow, + 1 >
C/D ≧ – 1 must hold. Compare the
signs of C and D. If they are of oppo-
site signs, addition C + D is performed,
whereas subtraction C – D is perform-
ed if they are of the same sign. The
result of the addition or subtraction
will be the initial value of R. If the
sign of R is opposite to that of C,
division is feasible. Otherwise the
case is division overflow. Assuming a
formal bit qn+1 above the most signif-
icant bit qn. with the values qn+1 = 0 for
addition and qn+1 = 1 for subtraction,
these operations can be uniformly
recognized as

)21(1+−+= nn qDCR (2) .

(2) If the division is feasible, D is sign-
extended and shifted right and the
signs of R and D are compared. If
they are of the same sign, D is
subtracted from R and 1 is assigned to
the least significant bit of Q. If they

島貫
テキストボックス
－134－

are of opposite signs, D is added to R
instead of being subtracted from R
and 0 is assigned to the least signi-
ficant bit of Q. This process is
repeated for all bits. That is

 1
1 2)21(−+−
− •−+= in

iii qDRR (3)

 (i = n, n - 1, … , 1) .

(3) The sign of R is compared with the

sign of D. If they are of the same sign,
adjustment is not necessary for R and
then 1 is assigned to the least signif-
icant bit of Q. If they are of opposite
signs, adjustment of R is necessary.
D is added to R and then 0 is assigned
to the least significant bit of Q.

 start division

 Rn = C – D

 compare =

 signs of

 C and D ≠

 Rn = C + D
 overflow
 check overflow break
 sign no

reversed ? yes

 shift D right

 = Ri-1 = Ri – D

 for i = n compare qi = 1
 down signs of

 to 1 Ri and D Ri-1 = Ri + D

 ≠ qi = 0

 q0 = 1
 compare = remainder
 signs of R0 adjustment
 and D ≠ q0 = 0
 R0 = R0 + D
 end division

Figure 1. Division Sequence

 The overall sequence of processes is
shown on Figure 1.

The difference of this interpretation
from the previous one is that the addition
or subtraction is chosen and performed
based on the signs of R and D after the
shift operation at each stage. Another
difference is that D is shifted right in-
stead of shifting R left. This interpreta-
tion can be proven by summing up the
formulae (2) and (3) for i = n, n - 1, … , 1.

)21(1+−+= nn qDCR

1

1 2)21(−
− •−+= nnn qDRR i = n

2
112 2)21(−
−−− •−+= nnn qDRR i = n –1

 M
nqDRR −•−+= 2)21(110 i = 1,

∑
+

=

−+−−− −−+=
1

1

11
0 22)21(2

n

i

in
i

n qDDCR (4)

is obtained. Moving terms from one side
to the other, (4) can be expressed as

∑
=

−+−
+ +++−=

n

i

n
i

in
n RqqDC

1
01 }22)1(2{

(5).

Regarding the terms in the braces on the
right side as Q, (5) corresponds to the
general expression of division, the
dividend equals the product of the divisor
and the quotient plus the remainder. In
order that R0 is qualified as the remainder,
∣2-nD∣>∣R0∣, that is (2-nD) 2 > R0

2 must
hold. This is a special case for

 (2-n+i D) 2 > R i

2 (6)

 (i = n, n - 1, … , 1, 0),

which can be proven by mathematical
reduction. The case i = n can be proven

島貫
テキストボックス
－135－

since the condition + 1 > C/D ≧ – 1 is
already verified at the process (1) and Rn
obtained by the process (2) satisfies D 2 >
Rn

2 . For i = n –1, … , 1, 0,

)2)(2(

)2(
11

1
1

1

212
1

−+−
−

−+−
−

−+−
−

−+

=−
n

i
in

i

in
i

RDR

DR
 (7).

Applying the relation (3), the left side of
(7) is equal to:

)2(DRR in
ii

+−− < 0

 for subtraction (qi = 1)

and)2(DRR in
ii

+−+ < 0

 for addition (qi = 0).

Thus the relation (6) holds and accord-
ingly the relations (2-nD) 2 > R0

2 and
∣2-nD∣>∣R0∣ hold.

This is not a new algorithm for
division but only a different interpreta-
tion of the well-known non-restoring
method. The right-shift of D used to be
commonly adopted at an early stage of
computer arithmetic, when the compari-
son method or restoring method was
widely used. In another word, this
interpretation was inspired by the tradi-
tional method of division.

This interpretation has the follow-
ing merits as compared with the conven-
tional one.
(1) The left shift of R or any other operand

is not involved during the processes.
Accordingly there can be no liability of
overflow.

(2) Avoidance of left shift guarantees the
independence of the algorithm from
the CPU architectures which differ in
the treatment of the most significant
bit at left shift.

(3) The choice and performing of addition
or subtraction of R and D are done
based upon the current status of the
signs of R.

3. Numerical Examples
 We verify this interpretation with
two numerical examples. The value of n
is assumed to be 4. Accordingly the divi-
dend C and remainder R consist of 9 bits.
The initial divisor D consists of 5 bits and
will be sign-extended during the opera-
tion and the final number of bits will be 9.
The quotient Q is not determined yet but
5 bits result is expected. All numbers
are expressed in 2’s complement. We
verified these examples with a CASLⅡ
assembler program.
Example 1
 dividend: C = 0.01101001 = 105/256
 divisor: D = 1.0101 = –11/16
 – divisor: – D = 0.1011 = 11/16

operations processes

0.01101001
+)1.0101
 1.10111001

= –71/256= R4

opposite sign,
addition, R4 = C + D
sign reversed,
division feasible

 1.10111001
+)0.01011
 0.00010001
 = 17/256 = R3

shift D right,
same sign, q4 = 1
subtraction
R3 = R4 – D

 0.00010001
+)1.110101
 1.11100101
 = –27/256 = R2

shift D right,
opposite sign, q3 = 0
addition,
R2 = R3 + D

 1.11100101
+)0.0001011
 1.11111011
 = –5/256 = R1

shift D right,
same sign, q2 = 1
subtraction,
R1 = R2 – D

 1.11111011
+)0.00001011
 0.00000110
 = 6/256 = R0

shift D right,
same sign, q1 = 1
subtraction,
R0 = R1 – D

The signs of R0 and D oppose. Remain-
der adjustment needed. q0 = 0
R0 = R0 + D = 0.00000110 + 1.11110101
= 1.11111011 = –5/256 Q = 1.0110 = –10/16
This result is verified as
105/256 = (–10/16)(– 11/16) –5/256

島貫
テキストボックス
－136－

Example 2
 dividend: C = 1.10100010 = –94/256
 divisor: D = 1.0011 = –13/16
 – divisor: – D = 0.1101 = 13/16

operations processes

1.10100010
+)0.1101
 0.01110010

= 114/256= R4

same sign,
subtraction,
R4 = C – D
sign reversed,
division feasible

 0.01110010
+)1.10011
 0.00001010
 = 10/256 = R3

shift D right,
opposite sign, q4 = 0
addition
R3 = R4 + D

 0.00001010
+)1.110011
 1.11010110
 = –42/256 = R2

shift D right,
opposite sign, q3 = 0
addition,
R2 = R3 + D

 1.11010110
+)0.0001101
 1.11110000
 = –16/256 = R1

shift D right,
same sign, q2 = 1
subtraction,
R1 = R2 – D

 1.11110000
+)0.00001101
 1.11111101
 = –3/256 = R0

shift D right,
same sign, q1 = 1
subtraction,
R0 = R1 – D

The signs of R0 and D coincide. Re-
mainder adjustment not needed. q0 = 1
R0 = 1.11111101 = –3/256
Q = 0.0111 = 7/16
This result is verified as
–94/256 = (–13/16)(7/16) –3/256.

4. Extensions and Applications
 4.1 Extended Binary Expression
 Before discussing on the application
to SRT method, we verify that this inter-
pretation holds also for the extended

binary expression, which permits 11 −=

as well as 1 and 0 for the bits qi’s of the
quotient. In addition to that, we assume
the most significant bit qn+1 , which is
determined by the first step to check the

division feasibility. The values for qi’s

are 1 when C and D (or Ri) are of oppo-

site signs and 1 when C and D (or Ri) are
of the same sign. The quotient is
obtained as qn+1.qnqn-1…q2q1 instead of
qn.qn-1qn-2…q1q0. The examples in the
chapter 3 can be recognized as:
Example 1:

qn+1.qnqn-1…q2q1= 0111.11111.1 = or 0110.1

Example 2:

qn+1.qnqn-1…q2q1= 0111.01111.1 =

 4.2 SRT Method
 Applying SRT method to Example 2,
we can obtain the result:

operations processes

1.10100010
+)0.1101
 0.01110010

= 114/256= R4

110 same sign,
subtraction,
R4 = C – D, q5 = 1
sign reversed,
division feasible

 0.01110010
+)1.10011
 0.00001010
 = 10/256 = R3

011 opposite sign,
addition, R3 = R4 + D

q4 = 1

 0.00001010
 = 10/256 = R2

000 no operation,
q3 = 0

 0.00001010
+)1.1110011
 1.11110000
 = –16/256 = R1

001 same sign,
subtraction,
R1 = R2 – D, q2 = 1

 1.11110000
+)0.00001101
 1.11111101
 = –3/256 = R0

100 same sign,
subtraction,
R0 = R1 – D
q1 = 1

Q = 1101.1 == 0.0111= 7/16

 Here we examined the leading 3 bits
of Ri at each process. The “leading 3
bits” means the most significant 3 bits
excluding the extended sign bits desig-
nated by boxes in the tables. Accord-

島貫
テキストボックス
－137－

ingly, they consist of a single sign bit and
two numerical bits. If they are 111 or
000, the absolute value of Ri is less than
2–n+i–1. Addition or subtraction is not
performed and only D is shifted right.
The carry propagation to the extended
sign bits is not necessary for the SRT
method or non-restoring method since the
carry needs only be copied from the sign
bit to the higher bits. The Robertson’s
diagrams for the non-restoring method
and SRT method are shown on Figure 2.

 Ri–1=Ri – 2–n+i–1D qi

(a) Non-restoring method

 Ri–1=Ri – 2–n+i–1D qi

(b) SRT method

Figure 2. Robertson’s Diagrams

4.3 Application to Parallelism
 This interpretation is well-suited
for parallel high speed division through
quotient bits prediction. The shifted
results of D are obtained a priori and
accordingly the next addition and sub-

traction can be initiated before the
current operation is completed. Depend-
ing on the result of the current operation,
either one of sum or difference is adopted
as the result of the next operation. This
overlapping of successive operations can
be applied multiply.
4.4 Educational Aspects
 The avoidance of left shift prevents
overflow of Ri or loss of sign bits.
Addition or subtraction (or even no
operation) can be chosen based on the
result of shift instead of the sign of Ri
before the left shift. The right shift of R0

is unnecessary. These points eliminate
machine dependence and unnecessary
confusions in the process of under-
standing the algorithmic principles.

5. Conclusions
 We introduced and proposed a new
interpretation of the non-restoring meth-
od for division. As the result, a new
horizon of applications and education
emerged. A similar aspect is adopted
also in recent works [4]. Extension and
application to higher-radix division or
pipelining can be feasible.

References
[1] Department of Computer Science and

Electrical Engineering, University of
Maryland: Lecture 20, Multiply and
divide, www.cs.umbc.edu/~squire/
cs313_ l20.html (2004).

[2] T.C.Bartee: Computer Architecture
and Logic Design, McGraw-Hill, Inc
(1991).

[3] D.A.Patterson, J.L.Hennessy: Com-
puter Organization & Design 2nd
Edition, Morgan Kaufmann (1998).

[4] N.Takagi et al.: A Hardware Algo-
rithm for Integer Division. Proc. 17th
IEEE Symposium on Computer
Arithmetic (2005).

2–n+i–1D

–2–n+i–1D

Ri

2–n+iD

qi = 1

qi=1

2–n+i–1D

qi = 1 qi= 1

qi = 0

–2–n+iD

–2–n+iD

2–n+iD

Ri

–2–n+i–1D

島貫
テキストボックス
－138－

