

A robotics software framework to change execution based on

Behavior Trees at runtime

MAHIRO IGUCHI†1 HARUMI WATANABE†1

Abstract: This article contributes to easily dealing with robots’ behavior on the model at runtime. Modern robot systems have

been rapidly more complex and supported more varied services. Many of them must change their behavior at runtime. To solve

this problem, we propose a framework of Behavior Tree (BT) to change execution at runtime. The difficulty of this framework is

the delay time at changing BT. In this article, we focus on the delay time problem.

Keywords: ROS2, Behavior Trees, Robotics software framework

1. Introduction

 Recently, robot systems have been more complex and supported

larger and varied services. Many of them must change their

behavior at runtime because of their learning or maintenance. To

support building such systems, we focus on changing models at

runtime, called runtime change behavior, and choose Behavior

Trees (BT) as the modeling language. The BT helps us understand

such complex robot systems, and the runtime change behavior on

the BT contributes to easily dealing with behavior on the model

at runtime.

However, ordinary BTs do not contain functions to change the

built behavior. Also, they don't support the function to change the

robot's behavior at runtime. In this article, we introduce a

framework of BT with the runtime change behavior. Our

framework uses BehaviorTree.CPP [2] and robotics software

platform ROS2[3]. In the execution process, we can change the

behaviors without stopping the ROS2 program. The framework

supports building such systems that change behavior at runtime.

The difficulty of this framework is the delay time at changing BT.

Therefore, in this article, we engage in the problem of the delay

time problem.

The remainder of this article is as follows. Chapter 2 introduces

Behavior Trees. Chapter 3 introduces the framework. Chapter 4

applies to our framework for the ROS2 program. Finally, chapter

5 concludes this article.

2. Behavior Trees

 This chapter explains BT. The BT is a way of constructing the

behavior of autonomous robots and non-player characters as tree

models[1].

2.1 Structure of BT

Fig. 1 shows an example of BT. The root on the top node sends

a signal called a Tick to the child's nodes. If there are branches,

send a Tick from left to right. The nodes on the bottom are called

execution nodes. When each execution node receives a Tick, it

executes the program on its node and sends back a Tick to the top

node. Nodes between the top and bottom are called control flow

nodes. At a receiving Tick, each control flow node distinguishes

whether it sends the Tick to the next child node. Otherwise, it

 †1 Tokai University the Graduate School of Information and Telecommunication

returns the Tick to the parent node. The callbacks of Ticks consist

of RUNNING, SUCCESS, or FAILURE. One of the control flow

nodes is the Sequence node. When the Sequence node receive

SUCCESS on a Tick, it sends a Tick to the next child node.

2.2 Behavior of BT

The behavior of Fig. 1 is as follows. First, the left node receives

Ticks and checks anyone there. If anyone is there, the Sequence

nodes send the next child's nodes, resulting in execution actions

with smiles and waving hands. If no one is there, the Sequence

nodes do not send the next child's nodes and return Ticks to the

Root node.

Fig. 1 Example of BT

3. Change of behavior on BT

 In this chapter, we present a robotics software framework to

change software on BT at runtime. In our framework, users use

BehaviorTree.CPP[2] and robotics software platform ROS2[3].

Fig. 2 shows a process to change behavior based on BT at runtime.

In the BehaviorTree.CPP, tree models of BT are written in XML

file format. The sequence of the execution is decided based on the

XML file. The robot can change behavior at runtime by

modifying the XML file and reloading it.

 The following describes the normal process. It means that the

process doesn't happen with the changing behavior at runtime. In

the behavior of the blue line in Fig. 2, first, the execution thread

of BT acquires "update_mutex." Then, the thread releases the

mutex after the program finishes the execution.

The following describes the runtime change behavior shown in

the red line of Fig. 2. First, when users change the XML file, a

method "Behavior Trees rebuild call" is called, then tried to

acquire "update_mutex." Second, it acquires the mutex when the

Engineering

Asia Pacific Conference on Robot IoT System Development and Platform 2023 (APRIS2023)

ⓒ 2023 Information Processing Society of Japan 77

“Behavior Trees execution” thread releases the mutex at the end

of the program. When the” Behavior Trees execution” thread

doesn’t acquire the mutex, it rebuilds the program based on the

XML file. After that, the” Behavior Trees rebuild call” method

releases the mutex. The “Behavior Trees execution” thread

returns to the execution normal process.

3.1 Issue

This section clarifies the issue to the delay time of changing BT.

The above process needs to wait until the end of the program to

change execution. It means that the delay time happens to wait

for the changing execution. The article calls this problem the

delay time of the change in the BT problem. This article solves

the problem by changing the contents of the methods

corresponding to nodes without reconstructing BT.

Fig. 2 Process of changing BT

3.2 Runtime change behavior considering the delay time

 We propose a method to change behavior before a system built

using the BT has finished processing using ROS2's pluginlib[4].

To deal with the runtime change behavior, we must change the

behavior before the node completes its execution. For the issue,

we use a pluginlib of ROS2[4]. ROS2's pluginlib can dynamically

plug or unplug other package classes. Fig. 3 shows an example of

pluginlib to change the main method. The figure contains a main

method and three packages. The main method has two

"printAction" methods: one is marked in red dashed lines, and

another is marked in blue dashed lines. The main method

executes the "printAction" method. Thus, the behavior of

"printAction" method before plugging the package is different

from "printAction" method after plugging. Each package contains

the behavior of a node. Thus, if the package is switched to another

package, the node's behavior is changed. We call such

"printAction" methods to hot methods. Fig. 4 shows a process of

changing node behavior by using pluginlib.

Fig. 3 Example of change the main class by using pluginlib

Fig. 4 Process of changing hot methods on BT

4. Application

 This chapter applies our framework to ROS2 program. Fig. 4

shows a result of the application. To confirm the runtime change

behavior, we prepared two types of nodes: one node shows

sentences with small letters; Another shows sentences with

uppercase letters. The outline of the behavior is shown in the left

of Fig. 5. The result is show in the right of Fig. 5. As shown in

this figure, we confirmed the behavior change from small letters

to uppercase letters without waiting to finish the program.

Fig. 5 The result that runs to the proposed framework

5. Conclusion

In this article, we proposed a framework of BT with the runtime

change behavior. This framework solved the problem of the delay

time at changing behavior. To confirm the behavior, we applied

the framework to the small example. That was changed the

sentences from small letters to uppercase letters.

 In future work, we will apply the framework to more practical

systems and evaluate the performance of the runtime change

behavior.

Reference
[1] Colledanchise, Michele, and Petter Ögren. "Behavior Trees in

Robotics and AI: An Introduction." arXiv preprint

arXiv:1709.00084 (2017).

[2] “ Behavior Trees Library in C++. Batteries included.”.

https://github.com/BehaviorTree/BehaviorTree.CPP, (accessed

2023-07-14).

[3] Steve Macenski, Tully Foote, Brian Gerkey, Chris Lalancette,

William Woodall. "Robot Operating System 2: Design, architecture,

and uses in the wild." Science Robotics 7.66 (2022): eabm6074.

[4] “Creating and using plugins (C++) — ROS 2 Documentation: Foxy

documentation” . https://docs.ros.org/en/foxy/Tutorials/Beginner-

Client-Libraries/Pluginlib.html, (accessed 2023-07-14).

Asia Pacific Conference on Robot IoT System Development and Platform 2023 (APRIS2023)

ⓒ 2023 Information Processing Society of Japan 78

