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Secure Processor Architecture for High-Speed Verification of Memory Integrity
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This paper proposes a p or-integrated approach to verify the data integrity of external memory.
Present processors always trust the data in off-chip memory without question. However, assuring the data
integrity of external memory will be one of the important basic technologies in secure computing environ-
ments in the future. A processor with the proposed mechanism can guarantee the integrity against memory
corruption even when running malicious software (e.g., computer viruses, corrupted untrusted operating
systems) or when subject to physical attacks.

Many software verification methods have been proposed. However, those methods have limitations in
speed and security in comparison with hardware-integrated approaches. A processor architecture that uses
an “Incremental Multiset Hash Function” has also been proposed by G. E. Shu et al. However it degrades
the processor speed due to its heavy use of hash operations.

Our architecture achieves high-speed verification of memory integrity using a hardware accelerator that
monitors the behavior of memory accesses. By using a complicated but computationally lightweight scheme
to count memory accesses, the architectures can use Rijndael symmetric key cryptography, which is a super-
set of AES and has fast implementations, instead of a computationally expensive hash function. That con-
tributes to high-speed operation of integrity verification. The speed was evaluated by using SimpleScalar.
The instructions per cycle of our architecture were consistently better than in previous approaches, and

improved by 60% for high cache miss rates.

1. Introduction

As Internet e-commerce, digital content distribution
and so on have wide spread, security systems for per-
sonal information protection or digital right management
have become more important. On the other hand, there
have been increasing amounts of malicious software (e.g.,
computer viruses) and increasing numbers of physical at-
tacks on hardware chips or buses, where the security of
the systems can be threatened. Thus, most of today’s se-
curity countermeasures relying only on software are be-
coming more and more vulnerable to untrusted operating
systems attacked by malicious software or against physi-
cally attacked hardware.

Therefore, some security infrastructures using not only
software but also hardware that can safeguard program
execution have recently been proposed to create more se-
cure computing environments. They are trying to provide
a secure computing environment from a low level posi-
tion under software by using tamper-resistant of hardware
and high-speed implementations of cryptographic func-
tions. For example, the Next Generation Secure Com-
puting Base? and LaGrande? with the Trusted Platform
Module® were proposed by Microsoft, Intel, and the
Trusted Computing Group for authenticated program exe-
cution and digital rights management. The eXecute Only
Memory architecture 99 was proposed against protect
software privacy, where encrypted programs can only be
executed on a processor that has a certain secret key.

Among the fundamental technologies used secure in-
frastructures which are integrated with both software and
hardware, we focus on the data integrity of off-chip mem-
ory to assure that program and data stored in external
memory are not corrupted. In this paper, we propose
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a secure processor architecture to assure the integrity of
memory even under untrusted operating systems or phys-
ical attacks direct toward the hardware. In cases that re-
quire absolute security such as e-commerce, digital con-
tent distribution, electronic voting, and so on, a processor
with the proposed mechanism can provide a highly secure
computing environment.

A secure processor, AEGIS, proposed by Suh et a1.9-®
also has a mechanism to assure the integrity of memory.
Data and address transactions on an off-chip memory bus
and their sequences are monitored by the processor, and
are compressed into a hash value by using an Incremental
Multiset Hash Function (IMHF)®). Their architecture ex-
ecutes a heavy hash function SHA-1'? for every memory
access, and thus the speed of the processor is decreased.

Our secure processor architecture uses a computation-
ally lightweight special counting scheme for memory ac-
cess, and achieves high-speed in verifying the integrity of
memory. By using this novel counting scheme, the fast
block cipher Rijndael'V can be used instead of an IMHF
in the previous work. This contributes to the high-speed
integrity verification.

This paper is organized as follows. Section 2 formu-
lates the problem of off-chip memory integrity verifica-
tion. Section 3 introduces the proposed method. Section 4
describes the evaluated results of the method with a com-
parison to the previous approaches using a hardware sim-
ulation. Our conclusions are in Section 5.

2. Problem Formulation and Goal

This section formulates the problem of off-chip mem-
ory integrity, and defines the goals of the proposed
method.

We assume that a main memory (e.g., DRAM) is sepa-
rated from the processor. Such processors generally have
cache memory inside the chips (See Figure 1). The in-
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Fig.1 The architecture model of the supposed system.

side of the processor is regarded as a secure domain that
has tamper resistance against malicious software or phys-
ical attacks. An adversary cannot access secret informa-
tion in the processor, but the external components and the
interfaces of a processor are not protected against an ad-
versary. Data and address bus and control signals can be
observed. It is also assumed that an adversary can re-
place existing data on the off-chip memory with other data
at any time. For example, if the adversary uses physical
equipment such as a logic analyzer or a memory emulator
that is connected to the memory bus, the adversary can
perform such attacks.

We define memory integrity as follows: “Memory be-
havior is valid if the data read from a particular address is
the same as the data written most recently to that address.”
When the proposed processor is requested to guarantee its
integrity, the processor switches to “secure-mode.” If the
data in the memory has been altered by an adversary, the
processor can detect the attack by the end of the process
in the secure-mode.

The goal of the proposed architecture is to insure the
integrity of memory. In addition, we aim to reduce the
verification overhead and to provide a high-speed memory
integrity verification method.

3. The Proposed Method

The proposed architecture contains several nontrivial
ideas, and thus it is relatively difficult to understand with
a description of the architecture alone. Therefore, we start
with an intuitive description of the behavior of the method
in Section 3.1 before we go into the details in Section
3.2. Note that the discussion in Section 3.1 lacks tech-
nical completeness, but it is still helpful as an overview of
the proposed method.

3.1 Overview

This section introduces a skeletal overview of the pro-
posed method. If the data read from external memory
is the same as the data previously written to the same
address, the data is valid. A processor, therefore, can
guarantee the integrity by verifying the data transactions.
Most modern processors have cache memories, and there-
fore, it is sufficient to verify whether the data previously
written-back to the external memory is the same as the
data refilled from that memory whenever a cache replace-
ment occurs (See Figure 2). The proposed processor has
a verification module between the cache memory and the
external memory bus to verify those transactions.

In our approach, while in the secure-mode, the read and

Extemnal

transaction

Fig.3 Compressing transaction history for each read/write channel.

write transactions are independently XORed with read
and write history registers in the processor in order to
generate transaction histories, and stored into these reg-
isters again, respectively. However, if the raw data of the
transactions is XORed, an adversary can easily determine
the values of the history registers. Therefore, the read
and write transactions are independently encrypted with
the block cipher Rijndael and the encrypted data is se-
quentially XORed into the read and write history registers
(See Figure 3). At the end of process in the secure-mode,
if the read and write history registers hold same values,
it is assured that the memory has not been corrupted. If
the registers hold different values, it means corruption has
occurred.

For any cache operation, a pair of read and write ac-
cesses to the external memory are executed so that the
history of the read transaction will be the same as that of
the write transaction for that memory address. That is,
even when the cache operation is a write-back operation,
the processor first reads the data from the external mem-
ory and updates the read history register with the read
data. Next, the processor writes the new data to the mem-
ory and updates the write history register with the writ-
ten data. Similarly, when the cache operations is refill,
the processor first reads data from the memory and up-
dates the read history register. Next, the processor writes
the read data to the memory and updates the write his-
tory register. When an illegal write access to the memory
from outside of the processor is occurred, these history
registers are not updated by using the valid XOR opera-
tions, and thus this causes a mismatch between the values
in the read and write history registers.

However, a reordering of the input arguments of XOR
operations, or even-numbered XOR operations of the
same data do not effect the final value of XOR operations
(e.g.,a®b=b®aora=a®dada. Detailed examples
of these are shown in the following section). Therefore,
an adversary may falsify the sequence and the number of
memory accesses by using these characteristics, and may
obliterate the history of attacks. In order to detect such
attacks, AEGIS uses the IMHE, including a heavy hash
function. However, our new architecture can also detect
such attacks in high-speed. The proposed architecture in-
cludes memory access counters, that write the number of
memory accesses to the external memory. But an adver-
sary may also rewrite the counter value to erase the se-
quence of illegal memory accesses. In order to prevent
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Fig.4 The hardware architecture for memory integrity verification,

this, the counter value is encrypted with Rijndael. This
Rijndael circuit can be shared with the circuit that gener-
ates the transaction history to reduce the circuitry require-
ments. ’

3.2 The Architecture and Behaviors of the Verifica-

tion Module

This section explains the details of the architecture and
its behavior. In general, a processor stores only data into
external memory. However, the proposed secure proces-
sor stores both data and the value of the memory access
counter during the secure-mode. The way to update the
memory access counter is explained belows:

Figure 4 shows the architecture of our proposed
processor-integrated verification module that consists of
the components described below.

¢ Random Number Generator RNG(): When a new
process starts in secure-mode, a 128-bit random num-
ber k is generated as a secret key for Rijndael.

o Rijndael-192: Ex(d, c,a): A 192-bit (3 X 64-bit) data
block (d, ¢, a) is encrypted by using a random number
k generated by the random number generator. Then a
192-bit cipher text is output, where d, ¢, and a denote
the data, the counter, and the address, respectively.

o Read and Write history register R, W: According
to Equations (1) and (2), two 128-bit registers are up-
dated at each memory access with the higher 128 bits
of the Rijndael-192 output. The lower 64 bits are
for the memory access counter. Subscripts 7 and w
denote a read block and a write block, respectively.
Subscripts H and L denote higher bits and lower bits,
respectively. The time values ¢ and ¢ — 1 denote the
present and previous steps, respectively. The update
operations can be described as follows:

R := Ri-1 © Ex(dy, cr,ar)n, (¢Y)
W, := W1 @ Ex(dw, cws awn,
where ¢y = ¢, + Ex(dy, cr,a,)L. 2

o Global counter register g: In order to detect decep-
tion utilizing the characteristics of the XOR operation
as mentioned earlier, this register is incremented by
the output of Rijndael as follows:

8 = g1+ Ex(dr, crap)L. ©)]

The verification module has four behaviors: init, refill,

write-back, and verify (Detailed in Figure 5). The init

initializes the whole memory space that should be assured
for integrity at the beginning of the secure-mode. The re-
fill and write-back generate a transaction history for each
cache memory operation while in the secure-mode. These
behaviors generate a pair of memory accesses (i.e., read
and write accesses) for each operation. However, it should
be noted that this overhead is considered to be reasonable
for assuring the memory integrity. The verify reads the
whole memory space and verifies the integrity at the end
of the secure-mode. The verification module assures the
memory integrity by using these behaviors. Examples of
those behaviors are explained in the following section.

3.3 The special counting scheme

This section first describes three behavioral examples of
the proposed architecture. The first example is a case ver-
ified as valid. The next two examples are cases for attacks
using the characteristics of the XOR operation. Then
the novel computationally lightweight counting scheme
to block such attacks is explained.

Figure 6 shows three behavioral examples where the ex-
ternal memory has only one address for simplicity. (1) is
a case verified as valid. (2) and (3) are the cases of attacks
by using reordering or two XOR operations, respectively.

In Figure 6 (1), first the memory is initialized with 0
data, and the write history register is updated. Both read
and write accesses are executed anytime a cache opera-
tion occurs, and the read and write history registers are
updated. Finally the memory is read to update the read
history register, and the final values of the read and write
registers are compared. If an adversary alters data in the
memory, these values will become inconsistent.

The above mechanism can detect most attacks, such as a
simple attack that simply corrupts data in external mem-
ory, a spoofing attack that brings data stored in another
address to overwrite a target address, and a replay attack
that overwrites current data with the data that existed ear-
lier in the same address. However the following two kinds
of attacks cannot be detected. In Figure 6 (2), an adver-
sary reorders the transactions to obliterate the history of
the corruption. In Figure 6 (3), an adversary makes the
processor read the corrupted b twice to obliterate the his-
tory of the corruption with two XOR operations. There-
fore, the proposed architecture provides countermeasures
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Fig.5 The behaviors of the verification module.
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Fig.7 An example of the global counter register and the counter
fields.

by using a special counting scheme for memory accesses.

Each address in the external memory has a counter field
c in addition to the data field d (See the external memory
in Figure 4). The architecture counts memory accesses for
each address by using the counter fields. The value of the
counter field is included in the transaction history. Thus,
reordering attacks can be detected. However, if an adver-
sary could predict future values of the counter in some
way, he could still reorder the transactions. Therefore, the
counter value is encrypted to prevent such an attack.

The architecture also provides a processor-internal
global counter register. Figure 7 shows a behavioral ex-
ample of the global counter and each memory access
counter field in the external memory, which has only three
addresses (0x00-0x02) to simplify the explanation. Each
counter field holds the number of write accesses to its ad-
dress. The global counter counts all of the write accesses.
At the end of the process in secure-mode, the sum of all

of the counter fields must be equal to the global counter
if no attack has occurred. Since the counter fields are in-
cluded in the transaction history held within the proces-
sor, the counter field cannot be corrupted. In Figure 7, the
values of the global counter register and the counter field
increase by one at the same time to simplify the explana-
tion. In a practical proposed architecture, the increments
are the lower 64 bits of the Rijndael-192 output for a read
channel.

In AEGIS, a sequence of transactions is also input into
the IMHF using a heavy SHA-1 that has collision resis-
tance, which can therefore prevent attacks using reorder-
ing and two XOR operations. Instead of such a heavy
function, we adopted an architecture where the data en-
crypted by a high-speed block cipher is summed up by
XOR operations, as represented in Equations (1) and (2).
However, this simple scheme is not enough for the attacks
using reordering and two XOR operations, thus, we also
include a special counting scheme of memory access to
prevent these attacks. This novel idea contributes to the
high-speed integrity verification.

4. Evaluation

We used SimpleScalar v3.0d'? with the parameters
shown in Table 1 for the performance evaluation. The
verification module was located between the L2ID cache
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Fig.6 The examples of valid and invalid accesses.
Table 1 The parameter settings for the simulation.
Processor model Speculative out-of-order Alpha
L1L LID 64 KB 2-way 32 B, 64 KB 2-way 32 B
L1 latency 2 cycles
L2ID Unified, 256 K - 1 MB - 4 MB, 64B
L2 latency 10 cycles
Memory latency (first, successive) | Normal (18, 2), Proposed (40, 2), AEGIS (80, 2) cycles
Memory bus 8-B wide
I/DTLB 4-way, 128 entries

and external memory. The size of the L2ID cache is con-
trollable (256 KB, 1 MB, or 4 MB). The memory latency
is controllable. In a typical processor, the memory latency
is 18 cycles for the first access and 2 cycles for the succes-
sive accesses for DRAM burst transfers. In the proposed
architecture, the latency is 40 cycles for the first access,
according to the experimental evaluation in AEGIS?. In
AEGIS, the latency is 80 cycles for the first access”. The
simulation used the SPEC CPU2000'® benchmarks. To
capture the characteristics of the benchmarks in the mid-
dle of their computations, each benchmark component

was simulated for 100 million instructions after skipping
the first 1.5 billion instructions.

Figure 8 shows the Instructions per Cycle (IPC). Nor-
mal denotes the IPC of a typical processor. Proposed and
AEGIS denote the IPC of the proposed architecture and
AEGIS, respectively. Figure 9 also shows the L2ID cache
mess rates.

The IPCs of the proposed architecture are always better
than those of AEGIS. For high cache miss rates, the IPCs
are improved by 60% in comparison to those of AEGIS.
On the whole, the L2ID cache miss rates directly affect
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the IPCs. The reason is that when an L2ID cache miss
occurs, the normal processor accesses memory, whose la-
tency is high. In addition, the proposed architecture cal-
culates Rijndael while AEGIS calculates a heavy IMHE
This appears to affect the execution performance directly.

5. Conclusions

This paper presented a processor-integrated approach to
memory integrity as a fundamental technique for a se-
cure computing infrastructure. The proposed architec-
ture monitors the transactions between cache and external
memory. The transactions are encrypted by using a high-
speed block cipher, and then are summed up by XOR op-
erations into a transaction history. This provides a high-
speed architecture for the memory integrity verification.

A simple combination of a block cipher and XOR op-
erations is not sufficient to prevent some clever attacks
that utilize the characteristics of XOR operations. The
previous work is resistant against these attacks by using
a heavy IMHE. On the other hand, our proposed archi-
tecture has solved these problems by utilizing a special
counting scheme for memory accesses while retaining the
fast memory transaction capability.

In the simulations, the latency of Rijndael was pes-
simistically estimated as 40 cycles. However, recent typ-
ical Rijndael hardware implementations can calculate re-
sults within 12 cycles!¥. Using such circuits can hide the
overhead related to verifying the memory integrity within
the general memory access latency.
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