FEFEN SR
IPSJ SIG Technical Report

W

2007—ARC—171
2007—EMB— 3
2007,71,722

IIEERIC X 5 SR E R MR BN 88 DRk T3

AT T (il Al

AHBEHT

EHILET AR

T REERT KEZEGREREIEITR

e N

HERESEA R 2 —

BE 4, FPGA OREDHEICH, ZEVNUIENER IP % FPGA ICHBAD B £ 31ck>T¥. L
AL, RRELTFOIAMIENC EHPMERENT WS, KHXTIE, BEERERWT, EREERH/NE
HROMBESRBIUMBERZRF LEEARET 3. SHFSRIKBOTHALZTIAZTY, AL CTOSS
LAS 15 @ OINEREE 21@ D OMMBERPRHT S, ERERD D, IESROENR 5 CICEESRKIC

B s aBERRELEmOBEMIEERT.

Behavioral Synthesis of Double-Precision Floating-Point Adders

Yuko Harat Hiroyuki Tomiyamal

Shinya Honda!

Hiroaki Takada! Katsuya Ishiit

t Graduate School of Information Science, Nagoya University
1 Information Technology Center, Nagoya University

Abstract

Recently, the continuously growing capacity of FPGAs has enabled us to place floating-point

arithmetic IPs on FPGAs. The required area for floating-point computations, however, is still high. This paper
presents several techniques to design double-precision floating-point adders and adder/subtracters for FPGAs
through behavioral synthesis. We generate totally 15 adders and 21 adder/subtracters from the same addition
and subtraction functions written in C. From the experimental results, we show the effectiveness of behavioral

synthesis techniques for complex arithmetic circuits.

1 Introduction

Traditionally, floating-point arithmetic units have
rarely been used in FPGAs due to their high cost.
A designer had to convert floating-point numbers in
system-level specification into fixed-point ones before
starting hardware design. However, the conversion
from floating-point numbers into fixed-point ones is
very time-consuming and error-prone.

Recently, the continuously growing capacity of FP-
GAs has enabled us to place single-precision floating-
point arithmetic IPs, or even double-precision ones,
on FPGAs. In most cases, floating-point arithmetic
IPs are provided in the form of gate-level netlist or
register-transfer level description in HDL. With such
gate- or RT-level IPs, it is often impossible to sat-
isfy application-specific design requirements such as
area, clock frequency, latency, and so on. Although
RT-level IPs are customizable or modifiable to some
extent, it is not easy to significantly change their la-
tency or area.

In this paper, we adders
adder/subtracters dealing with double-precision
floating-point formats for FPGAs through behavioral
synthesis. Behavioral synthesis is a technology
which automatically generates an RT-level circuit

generate and

from a sequential program [1]. Behavioral synthesis
techniques have extensively been studied for more
than two decades, and behavioral synthesis tools are
now being used in practice, particularly in Japanese
industry [2, 3]. Using behavioral synthesis, various
circuits with different area and performance can
be generated from the same sequential program by
specifying different synthesis options and constraints.

In this case study, we have designed totally 15
adders and 21 adder/subtracters for double-precision
floating-point numbers with using a behavioral syn-
thesis tool. Thus, a designer can select the most ap-
propriate design for application-specific requirements.
Goals of the experiments described in this paper are
two-fold. One is to test the effectiveness of behavioral
synthesis techniques for complex arithmetic circuits.
The other is to develop a set of guidelines for design
space exploration using behavioral synthesis.

The rest of this paper is organized as follows. Sec-
tion 2 explains experimental environments used in
Sections 3 and 4. Section 3 shows a case study on
behavioral synthesis of adders. Section 4 studies syn-
thesis of adder/subtracters. Section 5 concludes this
paper with a summary.

717

)
)]

Table. 1: Experimental results for adders

Clock const. (MHz) 25 50 100
Degltgn goal Perg Argzi Perf. Argg Peifj Argg
Area {ofices) 6,030 | 5651((4913| 5875|3667 587

Clock freq. {(MHz) 23.6 29.4(1 294 26.3 || 49.6 37.3
Clock cycles 3 21 5 22 10 25

Exec. time (ns) 127.3| 723.2)/169.9(8354 201.6| 671.0

Area-delay (x10%) || 768.7 | 4,088.7 || 834.9 | 4,918.0 || 739.3 | 4,107.0

2 Design Environment

This section describes the design environments used
in the experiments of Section 3 and 4.

2.1 Design Tools

We use a commercial behavioral synthesis tool eX-
Cite from YXI [4].
Cite with several optimization options and design con-
straints. Then, an RT-level description in VHDL or
Verilog-HDL is generated. The optimization options
and design constraints include clock frequency, the

A C program is input to eX-

number of functional units, and so on. For logic syn-
thesis and place-and-route, we use Synplify Pro from
Synplicity [5] and XST from Xilinx [6], respectively.
Logic synthesis and place-and-route are optimized for
performance. Xilinx Spartan 3 is specified as a target
device.

2.2 Double-Precision Floating-Point
Addition Program in C

We use a double-precision floating-point addition
function double_add from the SoftFloat suite [7]. The
SoftFloat suite is an open-source software implemen-
tation of the IEC/IEEE Standard for binary floating-
point arithmetic. It includes several fundamental
arithmetic operations such as addition, subtraction,
multiplication, division, and so on, supporting both
single-precision and double-precision floating-point
formats. In this paper, we select double-precision
floating-point addition due to its high computational
complexity and importance.

Note that the size of the double-precision floating-
point addition program is relatively large compared
with DSP kernels which were often used in the past
literature on behavioral synthesis. The addition pro-
gram consists of more than 600 lines of C code. After
behavioral level optimization such as common subex-
pression elimination and dead code elimination, there
exist 298 arithmetic and logic operations, 307 assign-
ments, 77 if statements, 26 goto/return statements,
and so on.

2.3 Evaluation Metrics

We evaluate the quality of designs with three met-
rics, i.e., area, ezecution time and area-delay product.
Area is measured by the number of slices occupied for
the designs. Execution time is defined as the prod-
uct of clock period and execution cycles. Area-delay
product is defined as the product of area and execu-
tion time. Since in general area and execution time
are in trade-off relation, area-delay product is useful
to evaluate the overall quality of the designs.

3 Synthesis of Adders

In this section, we first show a case study on synthe-
sizing adders for double-precision floating numbers.
Then, we employ three techniques to improve the
quality of adders.

3.1 Simple Synthesis of Adders

First, we synthesized adders from the double-
precision floating-point addition function explained in
Section 2.2. The clock frequency constraint was set to
be 25, 50 and 100 MHz. For each clock frequency,
we specified two types of synthesis goal to behavioral
synthesis tool eXCite: one is the performance max-
imization and the other is the area minimization by
sharing components as much as possible.

Then, we executed logic synthesis and place-and-
route to evaluate area and clock frequency of the de-
signs. The results are shown in Table 1. The row
“Design goal” of Table 1 represents the synthesis goal.

When the synthesis goal is the area minimization,
the number of required components is smaller than
that for performance maximization since several com-
ponents are temporally shared 1. The total area, how-
ever, is larger as imposing a more severe constraint
on clock frequency. This is because more multiplex-
ers and registers are required, and this area overhead
is larger than the area saving obtained by reduced
components. As a severe clock constraint is given,
the control path becomes compilicated and its area
is increased. Moreover, the execution time becomes

Information on the types and the numbers of components
requried by each design are omitted due to the limited space.

double_add
t
subFloat64Sigs

1

normalizeRoundAndPackFloat64

1

roundAndPackFloat64

Fig. 1: A call graph of double-precision floating-point
addition function

addFloatb64Sigs

propagateFloat64NaN

longer, which results in severe performance degrada-
tion. In terms of the area-delay product, the synthesis
goal for performance yields better designs than that

for area.
3.2 Synthesis of Adders with Goto
Conversion

The double-precision floating-point addition func-
tion double_add from the SoftFloat suite consists of
multi-level function calls. A call graph for double_add
In Fig. 1, addFloat64Sigs
directly calls propagateFloat64NaoN three times and
roundAndPackFloat6] once. subFloat64Sigs directly
calls propagateFloat64NaN three times, while it in-
directly calls roundAndPackFloat64 once via normal-
izeRoundAndPackFloat64. double_add has two argu-
ments ¢ and b. If both of their signs are same,
double_add calls addFloat6/Sigs, otherwise double_add
calls subFloat6/Sigs. In addition to the functions
shown in Fig. 1, there exist more than ten functions,

is shown in Fig. 1.

but they are omitted here since they are small and to
be inlined.

Unless specific options are given, eXCite inlines
all callee functions and generates one large function.
When synthesizing double_add in Fig. 1, for example,
all the functions are inlined into double_add. In gen-
eral, functional units can be shared among the inlined
functions, which leads to a small circuit area. When
large functions which are called multiple times are in-
lined, however, the number of states is increased. This
makes its control path complicated, leading to ineffi-
cient designs. This problem is avoided by applying
goto conversion to such functions. Goto conversion
is a transformation to replace function calls with goto
statements, and has been used in some behavioral syn-
thesis tools such as [2, 3].

An example of goto conversion is shown in Fig. 2.
Fig. 2 (a) is an original C source code. In this exam-
ple, there exist two function calls to func! in func2.

w

int func2(int a, int b){
int x1, x2, 20, z1, z, id;

;d=0:xl=a:x2=b:

goto L1;
int func1(int a, int b){ RO:20= 2
int z; id=lx1=bx2=a;
.- ' goto L1;
]return z; Ri:z1=2
! . int
i [T
» 20 switch(id){
e | case 0:
20 = func1(a, b): goto RO;
o) case 1:
21 = func1(b, a); goto RI;
! }

(a) ®

Fig. 2: (a) An emample of an original program (b)
The rewritten program with goto conversion

Without goto conversion, the body of func! is inlined
twice. This might lead to large number of states,
which results in the complicated control logic. In Fig.
2 (b), only func? is rewritten with goto conversion.
First, when a goto statement for label L1 is executed
above label R0, the control flow jumps to label LI
and calls funcl. After executing funcl, the control
flow jumps back to label RO from a switch statement
described below label L1 since id is zero. When the
control flow executes a goto statement for label L1
above label R1, it behaves as same as above. In the
program in Fig. 2 (b), the body of fun ¢! is inlined
only once in spite of being executed at two locations
in the C source code. In addition, the components re-
quired by func! can be shared with other operations
as same as inlining.

In this section, goto conversion is applied to syn-
thesis of double-precision floating-point adders. The
candidate functions for goto conversion are propagate-
Float6{NaN and roundAndPackFloat6 since they are
relatively large and called several times. Using goto
conversion, we have designed three adders as follows,
for each clock constraint.

RG: goto conversion is applied to roundAndPack-
Floag64 with inlining propagateFloat64NaN
PG: goto conversion is applied to propagate-

Float64NaN with inlining roundAndPackFloag64
RPG: goto conversion is applied to both roundAnd-
PackFloat64 and propagateFloat64NaN

We set three constraints on clock frequency, i.e., 25,
50 and 100 MHz. Based on the results in Section 3.1,
we specified performance maximization as our synthe-
sis goal. The experimental results are shown in Table

Table. 2: Experimental results for adders with goto conversion

Clock const. (MHz) 25 50 . 100‘ .
o RGT PQERPYIE RGL PGTRPGH KRG PRI RAg
Area ?sl.ioes) 5,503 | 4,799 | 5,854 || 4,641 | 4,614 5,158 || 3,578 | 5,46 5,034
0.91) | (0.80) | (0.97) || (0.87) | (0.94) | (1.05) || (0.98) | (1.49)| (1.37)
Clock freq. (MHz) 27.6 (21.7 (28.7 (26.7 (25. (29.2 (50.% (43.!)) (49.%
1.03) | (0.72) | (1.19 1.10) | (1.01 1.09 0.99 1.13 1.01

Clock cycles ¢ % g g g 10 10 1
Exec. time (ns) 108.5(138.4| 104.7 (| 187.5| 171.4| 1845 199.8| 227.9| 103.3
(0.83) | (1.09) | (0.82) || (1.10) | (1.01) | (1.09) || (0.99) | (1.13)} (1.01)
Area-delay (x103) 597.3 | 664.2 | 613.0(] 851.2| 791.0| 951.9|| 715.0|1,246.2}1,023.5
(0.78) | (0.86) | (0.80) || (1.02) | (0.95) | (1.14) || (0.97) | (1.69) | (1.38)

2. Numbers in parentheses in Table 2 are normalized
values where baseline is “Perf.” in Table 1.

When the clock constraint is 25 or 100 MHz, it is
the best to apply goto conversion only to roundAnd-
PackFloag6j in terms of area-delay product. When
the clock constraint is 50 MHz, applying goto conver-
sion only to propagateFloat6/NaN is the best. When
employing RPG on 50 MHz, PG on 100 MHz or RPG
on 100 MHz, the areas are larger than those without
goto conversion. This is mainly because, with use of
goto conversion, the number of registers is largely in-
creased by gate-level retiming. Particularly as more
severe clock constraint is given, larger numbers of reg-
isters are required. Then, the total area was also in-
creased due to the increase of registers.

In terms of area-delay product, the best design is
generated with RG on 25 MHz clock constraint among
all the results in Table 2.

4 Synthesis of Adder/Subtracters

In this section, we design adder/subtracters from
an addition and subtraction functions which sup-
ports the double-precision floating-point format.
Adder/subtracter is an arithmetic circuit which com-
putes both addition and subtraction. In Section 4.1,
we show the results with a simple method to merge
these two functions. Then, in Section 4.2, we employ
goto conversion to generate improved designs com-
pared to the simple design.

4.1 Simple Synthesis
Adder/Subtracters

The double-precision floating-point subtraction
function double_sub from the SoftFloat suite has a sim-
ilar structure as addition function double_add. dou-
ble_sub takes two arguments a and b. If both the
signs of o and b are same, subFloat6/Sigs is called,
otherwise addFloat64Sigs is called. A call graph of
double_add and double_sub is shown in Fig. 3. dou-
ble_addsub is a new function which is defined to merge
double_add and double_sub. An adder/subtracter for

of

1 1
double_add double_sub
1 x 1
subFloat64Sigs addFloat64Sigs
! 3

normalizeRoundAndPackFloat64 propagateFloat64NaN
1
roundAndPackFloat64

Fig. 3: A call graph of double-precision floating-point
addition and subtraction functions

typedef unsigned long long float64;

float64 double_addsub
(float64 a, float64 b, char id){
float64 z; /* output */
if(id == 0) z = double_add(a, b);
else 2 = double_subf(a, b);
return z;

Fig. 4: A new function which is defined to merge dou-
ble_add and double_sub

double-precision floating-point format can be gener-
ated from double_addsub.

First, in this section, double_sub was singly synthe-
sized, and then, the new function double_addsub was
synthesized. double_addsub has three input values;
two arguments o and b, and a 1-bit id. This program
is partially shown in Fig. 4. The bodies of double_add
and double_sub are omitted here. Variables defined
as double type are automatically converted to float64
type, which is in actual unsigned long long type. The
bitwidth of id is reduced to one by an option of eX-
Cite although it is originally defined as eight bits in
the C source code. If id is equal to zero, double_add is
called, otherwise double_sub is called. The experimen-
tal results for double_sub and a function which merges
double_add and double_sub are shown in Table 3.

For adder/subtracters, the area is almost same

Table. 3: Experimental results for subtracters and adder/subtracters

Function Subtracters Adder/subtracters
Clock const, (MHz) || 25 50] 100 25 50] 100
Arealofees) ||5,041| 5188|3,739| s148| 7.381] 9.608
Clock freq. (MHz) 21.0 19.6| 50.4 16.1 20.5 32.6
Clock cycles 3 10 3 5 10
Exec. time (ns) 142.6| 254.5]198.5 186.6 | 244.2| 306.5
Area-delay (x 103) 768.711,319.3[741.91/1,519.8|1,802.6 | 2,971.4

Table. 4: Experimental results for adder/subtracters

with components sharing
Clock const. (MHz) 25 50 100
Areadefices) 8995 | 8281| 5993
(r1) | @12)| ©s61)
Clock freq. (MHz) 15.4 20.9 22.0
(1.04) | (0.98)| (0.72)
Clock cycles 4 11
Exec. time (ns) 259.9 | 287. 242.1
(139) | (1.18)| (0.79)
Area-delay (x103) || 2,338.2|2,374.0 | 1,439.0
(1.54) | (1.32)| (0.48)

as the sum of areas of double_add and dou-
ble_sub. The number of components required by an
adder/subtracter is also same as the sum of those
of double_add and double_sub. This is because dou-
ble_add and double_sub were speculatively executed
even though execution of double_add and double_sub
must be exclusive. Therefore, the components are
hardly shared between the two functions.

Next, in order to prevent from the speculative ex-
ecution of double_add and double_sub, we explicitly
inserted a clock boundary after the condition test in
Fig. 4 so that double_add and double_sub are mu-
tually executed. This helps components be shared.
The experimental results are shown in Table 4. Val-
ues in parentheses in Table 4 are normalized by
“Adder/subtracters” in Table 3.

In terms of area in Table 4, when the clock con-
straint is 25 or 50 MHz, the areas are increased com-
pared to the results in Table 3. This is mainly because
the number of multiplexers is increased to share the
components. When the clock constraint is 100 MHz,
on the other hand, the area is reduced since the num-
ber of registers is significantly reduced. Note that, in
general, the speculative execution requires more reg-
isters.

4.2 Synthesis of Adder/Subtracters
with Goto Conversion

As explained above, double_add and double_sub have

very similar structures. Fig. 3 shows that both dou-

ble_add and double_sub call addFloai64Sigs and sub-

Float64Sigs. In the experiments in Table 3, both

addFloat64Sigs and subFloat6/Sigs are inlined twice

float64 double_add(float64 a, float64 b ¥
int aSign, bSign;

aSign = extractFloat64Sign(a);
bSign = extractFloat84Sign(b);
if (aSign == bSign) {
return addFloat64Sigs(a, b, aSign);
Jelse {

return subFloat64Sigs(a, b, aSign); fioat6d double addsub

(float64 a, float64 b, char id){

1 float64 z; /* output */
(a) int aSign, bSign;
float64 double_sub(float64 a, float64 b)|
int aSign, bSign; aSign = extractFloat64Sign(a);

bSign = extractFloat84Sign(b);
i(aSign = bSign && id = 0)
)l (aSign '= bSign && id '=)}
z = addFloat64Sigs(a, b, aSign);
Jelse{
z = subFloat64Sigs(a, b, aSign);

aSign = extractFloat64Sign(a);
bSign = extractFloat64Sign(b);
if (aSign == bSign) {

return subFloat64Sigs(a, b, aSign);
Jelse {

return addFloat64Sigs(a, b, aSign);
return z;

(b) (e)

Fig. 5: A new function which is defined to merge dou-
ble.add and double_sub

since the functions are called by both double_add and
double_sub. This makes designs large. To avoid
inlining large functions such as addFloat6{Sigs and
subFloat64Sigs, firstly, we employ goto conversion to
addFloat64Sigs and subFloat6/Sigs. This design is de-
noted as ASG.

The C source code of double_add and double_sub are
shown in Fig. 5 (a) and (b), respectively. Fig. 5 (a)
and (b) have little differences except a condition in
the if statement to determine a function to be called.
Note that exiract64Sign is a small function which gets
a sign bit of an argument, and aSign and bSign repre-
sents the signs of a and b, respectively. Then, we de-
fine a new function whose condition of if statement is
rewritten from if statements of double_add and dou-
ble_sub in order to directly call addFloat6/Sigs and
subFloat64Sigs from the new function as shown in Fig.
5 (c). In this function, addFloat64Sigs is called when
the signs of ¢ and b are same and id is zero or when
double_add and double_sub are not same and id is not
zero, i.e., id is one, otherwise subFloat6/Sigs is called.
Goto conversion is not applied to any functions. This
design is denoted as NGT.

Next, goto conversion is applied to roundAndPack-

Float6 and propagateFloat6{NaN for double_addsub
described in Fig. 5 (c). Then, we obtain three de-
signs NRG, NPG and NRPG. The five designs are
summarized as follows.

ASG: goto conversion is applied to addFloat64Sigs
and subFloat64Sigs

NGT: addFloat6/Sigs and subFloat64Sigs are di-
rectly called in a new function without goto con-
version

NRG: goto conversion is applied to roundAndPack-
Floag64 in addition to a technique NGT

NPG: goto conversion is applied to propagate-
Float64NaN in addition to a technique NGT

NRPG: goto conversion is applied to roundAnd-
PackFloat6] and propagateFloat64NaN in addi-
tion to a technique NGT

Table. 5: Experimental results for adder/subtracters
with goto conversion

Clock const. (MHz) 25
'leschlt!que ASGT NGT NR(; NPG | NRPG
Area {ofites) 7,937 | 6,040 | 5,448 4863| 5,787
(0.97) [(0.74) | (0.67) | (0.60) | (0.71)
Clock freq. (MHz) 211 23.7| 303 23.0 23.2
(0.76) | (0.68 (0.53& (0.70‘); (069&

Clock cycles

Excc. time (ns) 142. 126.8(99.1| 130.6| 1294
(0.76) | (0.68) | (0.53) | (0.70) | (0.69)
Area-delay (x10%) || 1,130.3 | 766.8 635.4| 748.6
(0.74) | (0.51) | (0.36) | (0.42) | (0.49)

Clock const. (MHz) 50
Technique ASGT NGT [NRG NPG | NRPG

States 5 5

Area ?shces) 7,190 | 4,408 | 4,702 | 4,732| 4,691
(0.97) | (0.60) | (0.64) | (0.64) | (0.64)

Clock freq. (MHz) 223 28.7| 274 30.6 26.7

0.92) | (0.71) | (0.75 0.67 0.77
Clock cycles (% ¢ ¢ g ¢ g ¢ g-
Exec. time (ns) 224.5| 174.0 | 182.7| 163.4| 1874
(0.92) | (0.71) | (0.75) | (0.67) | (0.77)
Area-delay (x10%) ||1,613.9| 766.8 | 858.8| 773.4| 879.0
{0.90) | (0.43) | (0.48)| (0.43)| (0.49)

Clock const. (MHz) 100
Technique ASGT NGTT NRG NPG [NRPG
States 10 10 10 10 19
Arca (shces) 5,382 | 4,054 | 4,393| 5823 522
(0.56) | (0.42) | (0.45) | (0.60) | (0.54)

Clock freq. (MHz) 385| 443| 47.9| 479| 470

0.85) | (0.74) | (0.68 0.68 0.69

Clock cycles ¢ 13(18(13 ¢ 13 ¢ 12)
Exec. time (ns) 259.5] 225.9| 208.7| 208.9| 2126
(0.85) (0.74) | (0.68) | 4(0.68) | (0.69)

Area-delay (x10%) |1,396.8| 915.9| 916.8 [1,216.4|1,111.5
(0.47)] (0.31) | (0.31) | (0.41) | (0.37)

The experimental results are shown in Table 5.
Values in parentheses in Table 5 are normalized by
“Adder/subtracters” in Table 3. in Table 3. All the
results with ASG have better results than the results
in Table 3. These results, however, were the worst
among with five techniques in Table 5. When the
clock constraint is 25 MHz, NRG has the best result.
In this case, all the techniques with goto conversion,
i.e.,, NRG, NPG and NRPG have better results than

the one with NGT. When the clock constraint is 50
or 100 MHz, NGT which does not employ goto con-
version has the best results. This is mainly because of
gate-level retiming during logic synthesis. With goto
conversion, gate-level retiming easily increases regis-
ters, which results in an increase in the circuit area.

4.3 Discussion
Through the case study, we have found the following
observations.

o Reducing the number of components does not al-
ways lead to area reduction because of the in-
creased multiplexers and registers.

e Goto conversion is useful in order to reduce the
area.

e However, goto conversion does not always lead to
area reduction because of the increased registers
through gate-level retiming.

We have seen so far that the quality of designs ob-
tained by behavioral synthesis is affected by a num-
ber of factors such as clock constraint, resource con-
straint, optimization options and so on. Therefore, it
is not easy but very important to establish a system-
atic methodology for behavioral synthesis.

5 Conclusions

In this paper, we have presented several techniques
on behavioral synthesis of double-precision floating-
point adders and adder/subtracters. We have gener-
ated totally 15 adders and 21 adder/subtracters with
several techniques such as goto conversion.

The future works are considered in two directions.
One is to develop other arithmetic IPs for double-
precision floating-point computations. The other is
to establish a systematic methodology for behavioral
synthesis of complex arithmetic circuits.

Reference

[1] D. D. Gajski, N. D. Dutt, A. C.-H. Wu, and S. Y.-L.
Lin, High-Level Synthesis: Introduction to Chip and
System Design, Kluwer Academic Publishers, 1992.

[2] K. Wakabayashi and T. Okamoto, “C-based SoC De-

sign Flow and EDA Tools: An ASIC and System Ben-

dor Perspective,” IEEE Trans. CAD, vol. 19, no. 12,

Dec. 2000.

K. Wakabayashi, “CyberWorkBench: Integrated De-

sign Environment Based on C-based Behavior Synthe-

sis and Verification,” Int. Symp. VLSI Design, Au-

tomation and Test, 2005.

[4] Y Explorations, Inc., http://www.yxi.com/.

[5] Synplicity Inc., http://www.synplicity.com/.

[6] Xilinx Inc., http://www.xilinx.com/.

3

[7] SoftFloat, http://www.jhauser.us/arithmetic/SoftFloat.html.

