
Curve Fitting with G1 Continuous Cubic Bézier Curves
Zhou Chiyu† Suguru Saito‡

†, ‡Tokyo Institute of Technology
E-mail :†chiyu@img.cs.titech.ac.jp, ‡suguru@c.titech.ac.jp

One merit of parametric curves is that users can mod-
ify the shape of curves by changing parameters. In our
previous paper [1], we proposed a procedure to vectorize
the contours of lines. However, it does not support a long
line.

This paper proposes a new method that can fit a long
curve on a raster image using several cubic Bézier curves,
and the G1 continuity is maintained between adjacent
curves.

1 Method

1.1 Preprocessing

Our line drawing vectorization method [1] is divided
into three steps: critical points (junctions and intersec-
tions) detection, topology extraction and curve fitting for
each path in the extracted topology. This paper intro-
duces the fitting method for the third step.

The fitting method is divided into two steps. The sepa-
ration of one long smooth curve into several Bézier Curve
segments according to curvature, and the fitting of each
segment with one cubic Bézier curve while maintaining
G1 continuity.

1.2 Curve separating

Our method is inspired by [2] that separates a curve
at points that have local maximum curvature. As shown
in Fig.1, the curvature at the point can be approxi-
mately calculated by [3], which uses a chord-curve area
surrounded by a fixed-length chord (blue lines) L and
the curve. Then it groups the points whose curvature is
larger than a threshold into several clusters (red parts)
Ai and pick the extrema points as breakpoints (green
points) Ti that have the largest curvature in each cluster.
Consequently, a curve is separated into several segments
according to Ti.

1.3 Fitting

When measuring the distance between a fitted curve
and original data points, a common method is sampling
on the fitted curve and calculating the sum of the short-
est distances between each data point and one point in
sampling points. However, it does not perform well when
the sampling points are not enough. We adapted [4] that
uses the height of the adjacent triangles as the distances.

To make the result smoother, G1 continuity that two
segments share the same tangent direction at their ad-
jacent point is constrained. In the case of the cubic
Bézier curves that defined by four control points P(i) ={
P

(i)
0 , P

(i)
1 , P

(i)
2 , P

(i)
3

}
, as shown in Fig.2, it is described

as Eq.1.

P
(i)
3 = P

(i+1)
0

P
(i)
3 = (1− λ)P

(i)
2 + λP

(i+1)
1

(1)

Fig.1: Curve separating
Fig.2: A G1 continuity cubic
Bézier curve

In pre-experiments, we adapted many optimization
methods such as harmony search and simulated anneal-
ing. However, in the case of cubic Bézier curves, we
observed that if given an appropriate initial solution, the
energy function could have very few local optima, using
gradient descent would converge much faster.

The breakpoints are fixed as endpoints of Bézier curves,
we used gradient descent to approximate the coordinates
of the other two control points. To have a better global
performance, we optimize two segments at the same time.
For the first two segments, their initial solutions are mid-
points of endpoints as the red points shown in Fig.3. Af-

Copyright 2023 Information Processing Society of Japan.
All Rights Reserved.2-893

1X-07

情報処理学会第85回全国大会

ter optimization, the first segment and the tangent direc-
tion of the first control points of the second segment are
fixed. Then the second segment will be optimized with
the third segment again. Algorithm 1 shows the details.

Algorithm 1 Fit(curve C)
Require: BreakpointSet {Ti}, SegmentSet {ci}
Ensure: P i+1

1 = P i+1
0 + βi+1 ∗ norm(P i

3 − P i
2)

Output: SolutionSet {P i
0 , P

i
1 , P

i
2 , P

i
3}

Initialize P0,P1

GradientDescent(P0,P1)
i← 1

while i 6= size(BreakpointSet) do
Initialize βi,Pi+1

P i
1 = P i

0 + βi ∗ norm(P i−1
3 − P i−1

2)

iter ← 0

for iter < thresholditer do
EnergyLoss = GradientDescent(βi,P i

2 ,Pi+1)
iter ← iter + 1

end for
if EnergyLoss > thresholdenergy then

NewBreakpoint← CurveMiddlePoint(Ti, Ti+1)

Insert NewBreakpoint to BreakpointSet
Continue

end if
i← i+ 1

end while

Fig.3: Curve fitting Fig.4: Average distance error

2 Experiments
To evaluate the performance of our method, we defined

the average distance error Eave, as

Eave =

∑n
i=0 di

arc_length
, (2)

where di is the distance from a sampling point of a target
curve to the fitted curve along its normal direction. Fig.4
supposes the black dash curve is the target, and the red
line is the fitted curve, and the blue arrows are di.

Fig.5 shows the results of our method. It can be seen
that our method can fit long curve successfully with a
very small error.

However, even with a small loss, the results do not look

Line1 Line2 Line3

Fig.5: The first row is the targets, the second part is our out-
puts, and the third row shows the breakpoints(red points) and split
points(green points) of our method.

smooth enough sometimes, such as in the last small seg-
ment of Line3. This is due to our method does not per-
form well enough at points with large curvature.

Table.1: Evaluation results

Evaluation Line1 Line2 Line3
Eave 0.0659 0.1072 0.0927
Emax(di)

0.1816 0.3388 0.2747

3 Conclusion
In this paper, we proposed a vectorization method that

fits a long curve with no sharp corners successfully using
several G1 continuous cubic Bézier curves. We are go-
ing to refine our algorithm that set more breakpoints at
points with large curvature.

References
[1] Z. Chiyu and S. Saito, “Vectorization of contours of lines in line

drawing,” IIEEJ Media Computing Conference, pp.#97 1–4,
2022.

[2] Z. Yan, S. Schiller, G. Wilensky, N. Carr, and S. Schaefer,
“K-curves: Interpolation at local maximum curvature,” ACM
Transactions on Graphics (TOG), vol.36, no.4, pp.1–7, 2017.

[3] L. Shao and H. Zhou, “Curve fitting with bézier cubics,” Graphi-
cal models and image processing, vol.58, no.3, pp.223–232, 1996.

[4] E.K. Ueda, A.K. Sato, T. Martins, R.Y. Takimoto, R.S.U.
Rosso, and M. Tsuzuki, “Curve approximation by adaptive
neighborhood simulated annealing and piecewise bézier curves,”
Soft Computing, vol.24, no.24, pp.18821–18839, 2020.

Copyright 2023 Information Processing Society of Japan.
All Rights Reserved.2-894

情報処理学会第85回全国大会

