1U-01

風力発電設備に対する負荷条件に依存しない 異常検知手法の開発を目的とした

オートエンコーダベース異常検知モデルの提案と考察

石塚諒一^{††} 河本薫[‡]

日立造船株式会社[†] 滋賀大学[‡]

1. 背景と目的

風力発電は風況による設備負荷の変動が大きく、 異常検知では負荷変動によるデータの変化と設備異 常によるデータの変化を区別することが課題とな る。そのため、先行研究[1]では異常検知の対象を 特定の負荷条件に限定することで、負荷変動の影響 を回避している。

本研究では、風力発電設備の中核部品である増速 機を対象に任意の負荷条件で異常検知が可能な手法 を提案し、その有効性を実データで検証した。

2. 利用データ

提案手法の評価には、実際の陸上風力発電設備 (定格出力:2000kW)の増速機から収集した振動 データを利用した。このデータは、負荷条件によら ず継続的に収集した振動波形(サンプリング周波数 25.6kHz)に、ドメイン知識を持つ技術者が異常度 合いのラベルを正常・予兆・異常の3段階で付与し たものである。本研究では図1に示す通り、入手し たデータを、正常(訓練・評価)・正常(テスト)・予 兆(テスト)・異常(テスト)の4つに分割し、後述の教 師なし機械学習モデルの評価に用いた。

3. 提案手法の説明と実装

3.1 特徴量の作成

特徴量の作成は、バンドパスフィルタ処理と短時間フーリエ変換 (STFT) により実施した。

バンドパスフィルタ処置では、軸受の異常による データの変化を際立たせるため、上限7.2kHz、下限 4.2kHzの1次バターワースフィルタにより数kHz帯 の振動を強調した。

STFT では、振動波形をスペクトログラムに変換 する。実装は、窓サイズ:2048 (0.08 秒)、スライド サイズ:512 (0.02 秒)とし、最終的なスペクトログラ ムの次元は周波数軸:1025、時間軸:50 となった。

Proposal and Discussion of an Autoencoder-Based Anomaly Detection Method Independent of Load Conditions for Wind Turbine

Ryoichi ISHIZUKA†‡ and Kaoru KAWAMOTO‡

† Hitachi Zosen Corporation: 559-8559, Osaka, Japan

‡ Department of Data Science, Shiga University 522-8522, Hikone,

3.2 オートエンコーダベースの異常検知モデル

本研究では、オートエンコーダベースの深層学習 を利用する。これは、深層学習の表現力により、風 力発電設備の多様な正常状態を学習することが期待 できるためである。提案手法では、モデルの入力と して 3.1 節で示したスペクトログラム、エンコーダ とデコーダに畳み込みニューラルネットワーク (CNN)、異常度としてスペクトログラムの再構成誤 差の絶対値の平均を利用する。CNN はスペクトロ グラムの特徴を画像として捉えるために採用した。 本研究では以下の3つの手法を比較する。

オートエンコーダ(AE) AE[2]は、入力データを低次 元の潜在変数に射影し、潜在変数から入力データを 再構成するモデルである。今回の実装を図2に示す。

図 2 AE の実装

変分オートエンコーダ(VAE) VAE[3]はAEの潜在変 数を事前分布により正則化する。これには、外挿デ ータを潜在変数に射影する際の挙動を安定させる効 果がある。よって、外挿となる異常・予兆時に、負 荷変動によるスペクトログラムの変化への追従性能 が高まり、設備異常によるデータの変化のみを明確 に捉えることが期待できる。実装は潜在変数に関連 する箇所以外はAEと共通とした。

AE-Grad AE-Grad[4]は学習済みの VAE を用いた 再構成手法である。AE-Grad による再構成像の特徴 は、VAE と比較して解像度が高く、学習データに 含まれている特徴のみを再構成することである。よ って、負荷変動によるスペクトログラムの変化のみ を高い解像度で再構成し、設備異常によるデータの 変化を際立たせることが期待できる。

4. 検証結果

再構成結果の比較入力したスペクトログラムと再構成結果の異常度別の一覧を図3に示す。いずれの 手法でも、異常によるスペクトログラムの変化は再構成されない傾向にある。また、図4に負荷条件に よる正常データの変化と VAE の再構成像を示す。 図 4 より、モデルは負荷変動によるデータの変化に 追従している。

AUC の比較 各手法の AUC を表 1 に示す。対異常 の AUC は、どの手法でも高い。一方で対予兆では、 VAE と AE-Grad の AUC が AE よりも高くなった。

表 1 各手法の AUC			
	AE	VAE	AE-Grad
対異常	0.997	1.000	0.999
対予兆	0.886	0.917	0.911

5. 考察

AEとVAEの潜在変数を、UMAP[5]により次元削 減した結果を図5に示す。図5より、VAEの潜在変 数は正常と予兆で一致しているが、AEでは一致し ていない。これはVAEが予兆データを安定して潜 在変数に射影したことを裏付ける。これにより、 VAEでは予兆データの再構成時に、増速機の異常 による変化が生じていない再構成すべきピクセルを、 正確に再構成できたため、AUCが高くなったと考 えられる。

対予兆のROC曲線を図6に示す。VAEとAE-Grad

の ROC 曲線を比較すると、VAE は AE-Grad と比べ て、低い異常度を示したデータに対して高い識別性 能を示した。これは、今回のスペクトログラムでは 異常検知に必要な本質的な解像度が低く、VAE の 再構成像でデータの特徴を表現できたためと考えら れる。

一方で、AE-Grad は VAE と比較して、高い異常 度を示したデータに対して高い識別性能を示した。 これは、VAE ではデータの外挿性が大きくなると 潜在変数の分布が正常データと異なり、再構成すべ きピクセルの再構成誤差が大きくなるが、AE-Grad では再構成時に予兆データの外挿性の影響を受けず に、再構成すべきピクセルを再構成できたため、と 考えられる。

最後に、本研究で検証した事例は一つであること には留意が必要である。今後は本手法を他の事例に も適用し、今回得た知見の一般性を検証することが 必要である。

図 5 AE と VAE の潜在空間の比較

参考文献

[1] 緒方淳,村川正宏,飯田誠.風力発電スマートメンテナンスのための振動データ解析に基づく状態監視システムの構築.風力エネルギー利用シンポジウム,Vol. 37, pp. 385-388, 2015.
[2] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, Vol. 313, No.5786, pp. 504–507, 2006.

[3] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv:1312.6114, 2013.

[4] David Dehaene, Oriel Frigo, S'ebastien Combrexelle, and PierreEline. Iterative energy-based projection on a normal data manifold for anomaly localization. arXiv:2002.03734, 2020.

[5] Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018