7K-03

MEC 向け ROS2-FPGA ノード自動生成ツールの並列処理性能評価

岡崎 英佑[†] 菅谷 みどり[‡] 大川 猛[†]
東海大学情報通信学部組込みソフトウェア工学科[†]
芝浦工業大学工学部情報工学科[‡]

1. はじめに

IoTや5G通信における計算基盤として注目の集 まる MEC (Multi-access Edge Computing)は、エ ッジから近い位置にサーバを配置することで通 信の最適化や超低遅延化などの役割が期待され ている[1]. これらを実現するために,並列処 理・負荷分散・低消費電力・再利用性が求めら れ, 高効率な FPGA 処理を ROS 2 (Robot Operating System 2)ノードして動作させること が望ましい. ROS 2は、通信方式の一つとして採 用されている publish/subscribe 通信により, ROS 2 ノード間で非同期が可能である.また, ROS 2は、容易に機能の追加や変更が可能で、再 利用性が高い. これまで我々は、PYNQ 上で動作 する ROS 2 ノードの自動生成ツール FOrEST (FPGA-Oriented Easy Synthesizer Tool)[2]を開 発してきた. FOrEST を用いることで, FPGA ロジ ックを ROS 2 システムに統合した ROS2-FPGA ノー ドを自動生成し、迅速に低電力かつ低遅延なア プリケーションを構築することが可能である. また、ROS2-FPGA ノードによる並列処理を可能と するため、複数 ROS2-FPGA ノードが生成可能なツ ール meta-FOrEST を提案した[4]. しかし、複数 の ROS2-FPGA ノードが動作する際の性能や課題が 明らかとなっていない.

本研究の目的は、複数 ROS2-FPGA ノードの遅延時間や消費電力を評価し、複数 ROS2-FPGA ノードの課題を明らかとすることである.

2. 複数 ROS2-FPGA ノード

図 1 は, meta-FOrEST[4]が生成可能な複数 ROS2-FPGA ノードの構成である. Talker/Listener ノードは, ROS2-FPGA ノードの 入出力としての役割を担う.各ROS2-FPGA ノード は, ARM プロセッサ上で動作する FPGA ノードと PYNQ ドライバ, FPGA 上で動作する FPGA ロジック から構成される.FPGA ノードは, FPGA ロジック のドライバである PYNQ ドライバを用いて, Talker/Listener ノードと FPGA ロジック間のイン ターフェースとして機能する.

Parallel Processing Performance Evaluation of ROS2-FPGA Nodes Automatic Generation Tool for MEC †Eisuke Okazaki, Takeshi Ohkawa, Tokai University

Midori Sugaya, Shibaura Institute of Technology

図1 複数 ROS2-FPGA ノードの構成

3. 評価方法

複数 ROS2-FPGA ノードを運用する際に,ボトル ネックとなる処理を調査するため,消費電力や ROS2-FPGA ノード遅延時間を計測した.各 ROS 2 ノードは独立して動作し,計測も独立して行っ た.評価環境として, FPGA ボードに M-KUBOS[5] を用いた. M-KUBOS は CPU に ARM Cortex-A53(4 コ ア), FPGA に Zynq Ultrascale+ MPSoC (xczu19egffvc1760-2-i)が搭載されている.OS は PYNQ v2.5.1 を用いた.

評価には、1024 点 FFT 回路の IP コアを複数含 む ROS2-FPGA ノードを用いた.FFT 回路は、 Xilinx FFT IP コア[6]を C++デザインから呼び出 して一体として高位合成可能なライブラリ[7]を 用いた.ROS2-FPGA ノードの入出力を行う Talker/Listener ノードは1000BASE-Tで繋がれた デスクトップ PC 上で実行され、全体の遅延時間 をメッセージ送信 (Talker)から受信 (Listener) までの時間とした.なお、Talker ノードは、2秒 毎に 1024 個の要素を含む浮動小数点(float)配列 を Publish する.

4. 評価結果

表1は、FFT 回路や DMA 回路などを含む全体の ハードウェア使用量と、配置配線後の消費電力 の推定値である.FFT 回路のコア数を2のべき乗 数増やしていくと、評価環境上で32 個搭載でき た.また、Vivado による消費電力の推定値は、 コア数が1個の時に3.503W、32 個の時に5.798W だった.しかし、表1の結果は回路を駆動するた

Э	LUT	FF	BRAM	DSP	電力
ア					推定
数					値(₩)
1	10, 751	15, 218	10.5	27	3. 503
	(2.06)	(1.46)	(1.07)	(1.37)	
2	20,065	28, 891	21	54	3. 579
	(3.84)	(2.76)	(2.13)	(2.74)	
4	38, 881	56,233	42	108	3. 725
	(7.44)	(5.38)	(4.27)	(5.49)	
8	76, 453	110, 918	84	216	4.029
	(14.63)	(10.61)	(8.54)	(10.98)	
16	152, 871	221,700	168	432	4.607
	(29.25)	(21.21)	(17.07)	(21.95)	
32	305, 356	442, 146	336	864	5. 798
	(58.42)	(42.29)	(34. 15)	(43.90)	

表 1	コア数ごとの HW 量と消費電力の推定値(W)
	(括弧内は xczu19 における HW 使用率)

めに必要な電力推定値であり, ROS 2ノードとし て動作する際は,より多くの電力を要すると考 えられる.

図 3 は、ROS2-FPGA ノードの遅延時間である. 左端が ROS2-FPGA ノード化前の処理時間であり、 FFT 処理の結果を得られるまでに約 0.76ms 要し た. FPGA ロジックは、DMA 転送により入出力が行 われ, データ入出力(約 0.05ms)・FPGA ロジック 処理(約0.31ms)の時間を含む. 左端以外は ROS2-FPGA ノードの通信を含む遅延時間であり、複数 の ROS2-FPGA ノードが動作しているときに1つの ノードを計測した結果である. ノード数が増え るごとに CPU-FPGA 間データ送受信時間が増加し た.これは、データ転送帯域利用率の増加が要 因であると考えられる. また, FPGA ロジック処 理時間が増加した. これにはソフトウェアから 処理終了の判断をする時間も含まれており、終 了判断をポーリングにより行うため、複数のプ ロセスが CPU コアを占有し合った結果,処理時間 が増加したと考えられる. さらに、ノード入出 力通信遅延時間において、1ノード時に約2.45ms であったが 32 ノード時は約 5.23ms と, 2 倍以上 の時間を要した. これは、デスクトップ PC と M-KUBOS 間の通信トラフィックの増加に起因してい ると考えられる.

5. 結論

本研究では, FFT 処理を行う複数 ROS2-FPGA ノ ードの性能を評価した. 評価環境において 32 個 の FFT 回路を搭載することができ, 消費電力は, FFT 回路が1個の時に3.503W, 32 個の時に5.798W だった. ROS2-FPGA ノードの遅延時間の評価では, ノード数が増えるごとに ROS 2 の通信遅延が増加 した. また, ノード数に関わらず, ROS 2 の通信 遅延が全体遅延時間の半分以上を占めているこ

図 3 ROS2-FPGA ノードの遅延時間

とが分かった. 今後の課題は, 複数 ROS2-FPGA ノ ードが動作する際の ROS 2 の通信遅延を削減する 方法の検討である.

謝辞

本研究は, JST, CREST, JPMJCR19K1 の支援を受けたものです.

文 献

- P. Porambage, J. Okwuibe, M. Liyanage, M. Ylianttila and T. Taleb, "Survey on Multi-Access Edge Computing for Internet of Things Realization," in IEEE Communications Surveys & Tutorials, vol. 20, no. 4, pp. 2961-2991, Fourthquarter 2018, doi: 10.1109/COMST.2018.2849509.
- [2] D. P. Leal, M. Sugaya, H. Amano and T. Ohkawa, "Automated Integration of High-Level Synthesis FPGA Modules with ROS2 Systems," 2020 International Conference on Field-Programmable Technology (ICFPT), 2020, pp. 292-293, doi: 10.1109/ICFPT51103.2020.00052.
- [3] 森隼人, 菅谷みどり, 大川猛, "FOrEST による ROS2-FPGA ノード自動生成手法の評価", 情報処理学会第 84 回全国大会 6J-01.
- [4] 岡崎英佑, 菅谷みどり, 大川猛, "PYNQ 上で動作する 複数 ROS2 ノード自動生成ツールの開発", 信学技報, vol. 122, no. 174, pp. 61-62, 2022 年 9 月.
- [5] FPGA コンピューティングプラットフォーム M-KUBOS(エム・キューボス) | 株式会社 PALTEKhttps://www.paltek.co.jp/design/original/mkubos/index.html
- [6] Fast Fourier Transform (FFT), https://www.xilinx.com/products/intellectualproperty/fft.html
- [7] FFT IP Library, https://docs.xilinx.com/r/en-US/ug1399vitis-hls/FFT-IP-Library