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Abstract

A pz;ogram extraction algorithm is
presented, which, given a formal proof of a
formula in a logical system, generates a
flow-chart program having this formula as
its specification. Natural Deduction system
is adopted as the logical system in which ac-
tual processes of proving a formula are car-
ried out. This is because the system goes
well along with our natural reasoning in prov-
ing a formula and therefore can be easily en-
hanced by the introduction of interactions

with humans., Thus, the method pfovides a

sufficient basis for constructing a correct

program by proving its specification in a con-

versational theorem proving system.

1. Introduction
Program synthesis is the construcfion

of a computer program from given specifica-
tions. Approaches taken so far are classified

_into three groupes: formal approaches,
heuristics and programming methodology such
as structured progrémming. In these ap-
proaches, the first ones have been studied

) most.1)2) Their proposed systems are well
specified and some of them are actually im-
plemented. These systems have been proven
to be sufficient for a simple problem. These
appfoaches are aiming at fully automating a
process of’synthesizing a program, but it
seems difficult to automate the construction
of a complex prLograr.a. An additional diffi-
culty is that the systems are not easily en-
hanced by the introduction of interactions
with humans. This is because the program
synthesis processes in the systems are not

along with our natural reasoning in construct-

~ 1~

ing a program.,

In this report, we present a new program
extraction method which will go along with our
natural reasoning and easily incorporate inter-
actions with humans. Since our present con-
cern is to provide a fundamental algorithm,
the domain of a program will be restricted to
the area of natural numbers, Taking a con-
structive property such as shown in 3) into ac-
count, we adopt HA (Heyting Arithmetic) as a
basic formalism of our method, giving it in
terms of Natural Deduction style, a fomalism
by G. Gentzen. Based on the formalism, we
give an extraction algorithm which, given a
formal proof of a formula in HA, generates a
flow-chart program having this formula as its
specification. Thus, the method provides a
sufficient basis for constructing a correct

program by proving its specification in a con-

versational theorem proving system.

2, HA
A formal system HA is a first order

theory which was formulated to represent an
intuitionistic ‘natural number theory. The sys-
tem HA is characterized as a formulation of
our constructive analysis in the area of natural
numbers, and it is known that HA is related to
the recursive functions.3)4) On the other hand,
as our approach aims at introducing the inter-
actions with humans into theorem proving sys-
tem, Natural Deduction style seems appropri-
ate to our system.

of NJ shematas).

Thus, we give HA in terms
In the following, an ordinary
first order language for natural numbers is as-
sumed, Variables, terms, formulas, wffs,
atomic formulas and so forth are understood

as usual meanings.



Axioms : If an atomic formula A becomes true
when it is interpreted intuitionistically,

A is an axiom. Nothing else is an axiom.

Inference Rule:

1) &-1 2) &-E 3) V-I
A B A&B A&B A B
AuB A B AVB - AVB
4) V-E 5) V-1 6) V-E
{al [B]
AVB C C F(a) VxF (x)
C VxF(x) F(t)
7) @-1 8) T -E 9) > -I
[F(a)] [a]
F(t) AxF(x) A B
HxF(x) A A>B
10) >-E 11) MJ
A A>B F(0) Vx(F(x) > F(x")
B VxF (x) -
where x' is a successor of x.
12)~-1; 13) ~-1, 14)~-E
[a] [a] [a]
B B ~B A ~A
~A ~A B

where B is where B is any

intuitionistically false. atomic formula.

The free object variable of V-I or H-E, desig-
nated by a in the respective schema is an
eigenvariable, A symbol t of V-E or H-I
denotes any term which is free for x in F(x).
Use of >-Iis restricted so that only one oc-
currence of A is removed at a time from as-
sumptions of B. Therefore, if there are n as-
sumptions of A in proving B, the schema gives

AD>DA>-++ DA OB instead of ADB. Functions
n times
and predicates appearing in HA are assumed

to be computable.

3. Programs

In this section, a program is specified
in terms of a flow-chart language. Besides
the usual elements of flow-chart figures, we
adopt two additional mechanisms in specifying

a program. The one is to admit a procedure

Lemma 3.1

definition including a recursive call mecha-
nism. The other is to use a program variable
taking a program or a procedure itself as its
value, This mechanism may be similar to the
function in ALGOL of calling a procedure with
another procedure as its actual pafameter.

In addition to the program variable, two other
variables are used to give a program; namely
an individual variablevtaking a natural number
as its value, and a logical variable taking

true or false as its value.

Definition 3.1 A program p is specified by:
1) An input variable list i(p) and an output
variable list o(p). Each element of these lists
is an individual, logical or program variable.
Values of the variables of i(p) cannot be
changed in p.

2) A flow-chart figure obtained by connecting
a number of boxes represented in F1g las

usual so that it starts from the box 1) and

ends in the box 2).

Similarly, a procedure i8 specified by a flow-
chart figure obtained by connecting a number
of boxes in Fig. 1 as usual so that it starts
from the box 3) and ends in the box 4). Here,
Pname 1% 2 procedure name, and (xj;°°*X,)
and (y3***¥m) are input and output variable

lists, respectively. Values of xj...x  cannot

be changed in this procedure.

It is assumed that there are infinite number
of individual, logical and program variables.

From this definition, a following lemma
is straightforward.

If 2 program p is

Start

G



then

)

Entry pn
XleeeXn;V1le-Ym

is a procedure, where i(p) is (x;**-x,) and
o(p) is (y1*** Vi) respectively.

As a matter of fact, when a program
vabiable is to take a program as its value, it
is realized by assigning a name of a new pro-
cedure which is introduced from the program
by this lemma, to the variable. Thus, a va-
lue of a program variable is always given in
the form of a procedure name.

In the following, we use an abbrivation
in combining a couple of programs to make
up another program. Namely, if a program

o and 8 are

a Start

Bl

a'

-Stop Stop

'we abbriviate

.
[24
al
‘ Y
B! B

< Stop ’

, while if o' or B' is one of the boxes in Fig. 1

or

: ]
| B-

means

Start

I

S

' T

top

T )
Start
2)

3) (
(x1

Entry ppname
feeXp; Vv *Vm)

),

6)

x -—f

x = f)

t

where P is a computable

predicate.

Fig. 1

call p
(X1°°*Xp5 ¥1°° *Ym)

l

where p, is either a proce-
dure name or a program variable.

7)

Flow-chart language

~3~



according as o' or B' is one of the boxes,

In general, procedures can be taken as spe-
cial forms of programs in describing their
properties. Therefore, programs are, here-
after, considered to include procedures unless

specified to the contrary.

4. Realization of a wif

Next, we give a relation between a p.ro-
gram and a wff in HA. Hereafter, it is as-
sumed that each bound variable appearing in a

waff is distinct,

Definition 4.1 (Type)A type is defined as
follows.

1) Symbols W .and P denote basic types.

2) A symbol ¢; is a listed type.

3) If t; (1< 1 <n) is a basic type or a com-
pound type, a list (t3---t,) is a listed type.
4) If tq and t, are listed types, tq -ty is a
compound type.

5) Nothing else is a type.

Definition 4.2

1) Any natural number or any individual va-
viable has the type w.

2) Any logical variable, true or false has the
type 0.

3) A null list has the type ¢...

4) A list (ujy-+-uy) has the type (ty--:t,) if
each u; (1<i<n) has the type t;.

5) A program p such that i(p) and o(p) have the
types tg and t, respectively, or a program
variable which is supposed-to take a procedure
whose input and output lists have the types tg
and t, respectively, as its value has the type
tg —= tp.

When objects ¢ and 8 have the same types, we

denote this as ¢ T: B.

Definition 4, 3 Let A be a wff in HA. Then,
input list I(A) and output list O(A) are defined
indﬁctively as follows. Hereafter, bound
variables appearing in a wff are considered

to be also individual variables.

‘1) A : atomic formula

I(a) = ¢
o(a) = ¢
2) I(AVB) = Conc(I(A),I(B))
O(AVB) = Conc(O(A),O(B))
3) I(A &B) = Conc(I(A),O(B))
O(A & B) = Conc(O(A),O(B))
4) I(VxF(x)) = Conc((x),I(F(x)))
O(VxF(x)) = O(F(x))
5) I(VxF(x)) = I(F(x))
O(VxF(x)) = Conc((x),0(F(x)))

6) I(A> B) ConC((vp), I1(B))
O(AD>B) = Conc(I(A),O(B))
T I~A) = (v
O(~A) I(A) ,

where ¢ indicates a null list, and vp or vp‘
is a program variable. A type of Vp OF VP'
is ty —t,, where ty or t, is a type of I(4) or
O(A), respectively, A symbol Conc means a
function of two arguments which concatenates
its second argument after its first argument,
such as
Conc((ul---un) (ag'e-euy,') —
= (ul.. cupn ul'.. .um’) :
Definition 4.4 Let A be a wif in HA, and p
a program. Then, p meets A if and only if

i(p) 3 I(A) and o(p) § O(A).

Definition 4. 5 Let A be a wff in HA, and
£, and £, lists whose each element is a
natural number or a program. Suppose

£y : I(A) and £, iO(A), a program Ev[ A( 4,
25)] is defined as follows.

An input variable list of the program is
¢, and an output variable list is (vy), where
v, is a logical variable.

1) A : atomic formula. in this case,
£7 and fp must be null lists. Then, Ev[A({,,
15)] is a program of assigning true or false
to v, as its value according to the result of
evaluating a formula A. If there are free
variables in A, they are considered to have

definite values. This program can be always



constructed because A is quantifier free and

does not contain non-computable functions or

predicates.
2) A =BVC Then [A{{, 4,)] is given
as follows,
Fig. 2-1
3) A=B&C
Fig. 2-2

4) A = VxF(x). In this case, I(VxF(x))
is Conc((x), I(F(x))). Therefore, £; must be
of the form Conc((n), £1'), where n is a natu-
ral number. A program Ev[VxF(x)({;, £)]
is

Fig. 2-3

5) A = IxF(x). In this case, O(IxF(x))
is Conc((x), F(x)). Therefore, I, must be of
the form Conc((n), £,'), where n is a natural

number. A program Ev[;Eb:F(x)(ll, )] is
Fig. 2-4

6) A =B >C. Inthis case, I(BDC) is
Conc((vp), IC)). Therefore, £; must be of
the form Conc((q), £;'), where q is a program,
and £ must be of the form Conc(£p', ﬁé"v').
Ev[B >C(L, £)] is

Fig. 2-5

7) A =~B. Then, ll must be (q), where
q is a program. A program Ev[~B(11,£2)]

is given as follows.
Fig. 2-6

Definition 4, 6 Let p be a program, and ¢
a list (u1-+-up), where each uj(1< i< n) is a
natural number or a program. Suppose a list
of first n elements of i(p) and £ have the
same types, p({) indicates a program obtained
from p after taking £ as its first n inputs.
Therefore, if i(p) is (x1+++Xp Xpt1e--%Xm),
i(p(2)) is (Xp41° * *%Xm). When i(p(£)) is ¢, in
other words, i(p) and f have the same types,

p(L) is a list of output values of p(£).

Definition 4. 7 Suppose a program p meets

~5~

Definition 4.8

Theorem

a wif A, then p is said to realize A if and
only if Ev[A(£,p(2))] is always (true) for any
list £ such that £ T:I(A).

Let A be a wif in HA. A
program Ev{A} in another program p is a
program Ev[A(Z1, £3)] in which £y and £
are lists of values of the variables of I(A)
and O(A) at the point in the program p. If
some of these values are not given, each of
them is defined as 0, true or ¢:)*), according
as the variable is individual, logical or pro-

gram variable,

5. Extraction of Programs
Now, we are ready to give a program
extraction method. This is done by proving a

following theorem.,

If a wif A is provable in HA, we

can construct a program p which realizes A,

The proof is by induction on the length of the
given deduction of A. At each step, an ex-
traction operator P is defined which actually

generates a desirable program.

Proof) In the following, it is assumed that
— indicates a relation of variables' refer-
ences and e» indicates a flow of a control
of a program.

First, i(p) and o(p) are given as I(A)
and O(A), respectively.

1) A : axiom

r Voo

P(A):
.
O(A)
I(A) I(B)
2) A B ,
A& B »
P(A) P(B)
P(A & B): ‘1’ ¢ ‘,
0o(4a) O(B)

(*) See 1) in next section.



Hereafter, if Ev[A(f;, £)] is

’

i

Vt‘_ true l th - Falj

|

is abbriviated to

then

i_fi_l

Ev (A(4, £2))

( Start ’ ( Start )

3) 4)

Ev(FixKes , £2)) Ev (Fi)(£1,£2)

6)

Ev(B(£2, q(£2)))

I vg—tur—eJ l:rt‘—false Ivﬁ—truil I;t‘—falseJ

‘ Stop ’ Stop

In 1) and 2), £; and £, are considered to

be Conc(4y, £7") and Conc(lz‘, 2 ") respec- L‘—true vt<—~false

tively, where £ “I(B), !2 O(B), .
] "-I(c), and £''= O(C) < Stop )
Stop

Fig. 2

~f~



P(A): I Iz

. P
1 )

@ , where
P(A & B) i
o d rwemn | [
0, ‘LOZ‘L
4 A ; B Similarly to 3).
KA (B
5) A . ( )\I: . (B)
AVE
P(A) > ¢P
P(AVB): Yol Y
1(A) 1(B)
B v i v
©) Vs -
de P(B)
P(AVE): v I
0(A) O(B)
7) [A] [B]
AVB Cp Cj 1(C)
c, { ¥
vy (%)
When P(C2 ) is o [P(A) 1B
given as VoV

Vo ¥

P(Cy) is defined as follows.

I(c) .

-

8) _F(a)

VxF (%) x I(Fa))
Start a<€<—x
P(VxF(x)):
P(F(a))
) v
9) VxF(x) O(F(a))
o L(F (1))
Xé—g
P(F®): P(VxF(x))
10)  F(b) O xF(x))
HxF (x) I I(F(t))
P(xF(x)): P(F(t))

1=

T
y

x  O(F(t))
11) [F(a)]
AxF(x) C2
Ci
When P(C5) is given as
I(C)

1(C) \L P(Cy): ‘L

¥ v v

(*%) P (B)

o P (AVE) Spave)| PO
f

_ry
P(Cp) t

B

I 1
O(C)

where S;SY,E is a program obtained by
substituting 6 for every 7 in a program

E.

a<—3XxX

v
¥ ! O};P(i{xﬂx))
o] [T
v

o ¥ el
Voo ¥

(*) If P(A) is a procedure, P(A) in P(C)
means the box where the procedure
P(A) is being called.
(%) If the values of I(B) are not defined
here, they are given similarly in Defini-
tion 4, 8.

The two rules of (%) and (%) apply to similar
cases appearing in the subsequent part of
this paper,



- 12) [A]
B

ASB
If P(B) is i I(B) |
ap P(A) ‘E
% 1(B)
P(A 2 B): [p |

'j | t
L 4 s

{l-) call vp(x; y)

*E

I(A) O(B)
where x = I(A) and y = O(A).

13) A ASB

B
First, a procedure p . is defined
from P(A) by the lemma 3.1,
then P(B):

IR
Cﬁt__)—_iv“l’name
\
where v_ is the first
element of I(A= B). P(A=B)

¢O(B\{/

14) F(0) vx(F(x)2DF(x'))
VxF(x)

where x'is a successor of x.

A new procedure p, is defined as follows.

P(VxF(x)):

I(F(x))

| call pr(ul; V)

O (xF(x))

Entry pr(u s v)

P(F(0))

(z,v,) = {y-1,p,)
w v
P(Vz(F(2)>F(z')))

where I(VyF(y)) and O(VyF(y)) are u and

v, respectively, and the first element of

u must be y,

A variable v_ is the first

P
element of I(F(z) ©2F(z')).
15) [a]
B
~A

where B is false when it is evaluated
intuitionistically.

When P(B) is

v vy
P(V)
Vy ¥

then P{~A):

( stop ) 1A)

where I(A) is w and O(A) is v.

[a] [a]
B ~B
~A

16)

By the hypothesis of the induction, P(B)

and P(~B) are given as follows.



P(B): ‘ll

P(~B):

T

!

O(~B)=x

Let I(~A) be (Vp)' First a procedure Py is
defined by the lemma 3. 1 from the follow-
ing program P(B)" (= P(A D B)).

vp" l I(B) JI

(%)
— 11 L

P(B)" vy

a—a call v " (u;w) -)E
P

v v

u O(B)

P
(%)
( Start H'(Vﬁ:v'};épl,vp)
"5y
} Pr—
Y call vp (w;w)
] []

Then, P(~A) is

Ev{s} 8

( Stop )

where v is O(A).
(%) (*%) In 16), it is assumed that there is
only one occurrence of P(A) in P(B). If
there are n{n > 1) occurrences of P(A) in
P(B), a program P(~A) is modified as
follows.

The program P(B") is obtained in the
same way as the case of constructing

P(ADAD -++ DA 5B) from given P(B),
n times
assuming n times of P(A) is included in

P(B). Therefore, i(P(B")) and O(P(B"))
are Conc(v;l. . .vgn), I(B)) and Conc(u;
ceeuy), O(B)), respectively. Further-

more, an assignment of (¥%) is replaced by:

4

1

" CRC )
(Vp:vpl:"':vI;I‘])‘—(pl: Vp' JVP)

v

17) ~A

B
where B is any atomic formula.
First a procedure p, is defined from a

program P(A) by the lemma 3. 1.

Then,

P(B):

Vp-— pr

\

P(~A) ¢

P

This means that d)p can be considered as
a realization of B by means of the logical
deductions which were used to prove the

realizations of P(A) and P(~A).

6. Correctness of P

Concerning the cases from 1) to 15),
their correctness is obvious, We, then, ex-
plain the correctness of 16).

Assuming Ev{A} in P(~B) always out-



puts (true), x gives a counter example to the
realization of a program pl(vp) by the hypothe-

sis of the induction on P(~B). Therefore,

Ev[ B(x, pl(vp)(x))] is (false). In addition, if
Ev{A} in P(B) also outputs (true), then a pro-
gram P(B) and a procedure pl(vp) become to

be exactly the same. By the hypothesis of the
induction on P(B), m is (true). Since
y is the same as pl(vp)(x), this leads to a con-
‘tradiction. In other words, at least one of
Ev {A} 's in P(~B) or P(B) must give (false)
and then, it transfers a control to the box

""Stop''. Thus, u always gives a counter ex-

ample to the realization of A.
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