VI7rkvxy I%¥ 9-3
(1979. 3. 29)

Lisp Debugging Tools

Toshiaki Kurokawa

Information Systems Lab., TOSHIBA R & D Center

ABSTRACT

In this paper discussed are debugging tools in the programming language Lisp. First, debug-

ging process is reviewed and concluded that it is indispensable for the process of software pro-

duction and that sharp debugging tools are very valuable. Next, Lisp is considered to be a pro-

gramming system where those tools are incorporated. Lispl.5, Interlisp, and Lispl.9 are review-

ed to see what kinds of tools are utilized today and what will be developed in the future. These

Lisp experiences are useful to design other programming systems and to develop more useful soft-

ware production systems.

§1 Introduction

Debugging is a popular activity in pro-
gramming, but Lisp is a less popular language.
It is natural that one suspects if the theme
'Lisp debugging tool' is of any use at all.
Eventually, the theme is useful for everyone
involved in programming because here Lisp
should be a programming system where a pro-
grammer can expect some useful tools for
writing, debugging, and editing his programs.

The concept of the programming system
has gained its position in the software en-
gineering world (see Wada /25/). Programming
tools and systems are important subjects for
today's software engineers (see Brooks /2/).

Lisp debugging tools are good examples
to review the (debugging) tools in the pro-
gramming system. It tells you how to recog—
nize, develop, and utilize the programming
tools and systems.

In the followings, §2 reviews debugging

process. §3 explains the programming system

aspects of Lisp, especially why Lisp has be-
come such a system. A relevant-talk is found
in Sandewall /20/. §4 presents the actual de-
bugging tools taken from Lispl.5/13/, Inter-
lisp /24/ and Lispl.9 /9/. §5 gives the ac-
count of the future directions of the debugs
ging tools. .

§6 concludes that we have climbed to the
stage where a useful highly productive soft-
ware developping system can be constructed.
Lisp programming system including its debug-

ging tools is a prototype for such an ad-

vanced system.

§2 Debugging Reconsidered

Debugging is a well known process far
programmers, but it is so strange to non-pro-
grammers that they ask "Why programmers are
making so many bugs? They must be too care-
less in their job!"

Well, from the psychological viewpoint

(see page 161 in /17/), the number of bugs is



too large to be considered to be caused by
human carelessness.

The principal reason is that the tools
and procedures with which we construct pro-
grams are incomplete. Although Dijkstra
needed not test his program made by his new
method /4/, it is not yet available for the
practical use.

Another reason is that a bug is defined
as an inconsistency between the actual be-
havior of the program and the expected one.
It is usual that the programmer's expectation
is not complete so that he found the true ex-
pectation only after the program is made.

Well then, is it possible to forget de-
bugging process when we overcome the above
difficulties? The answer is regretfully 'No'.
The first reason is that we cannot expect a
programmer to be perfectly careful. Careless
bugs cannot be exterminated. The second
reason is that the program is a product which
a variety of persons will use. So a user's
expectation may be different from the origi-
nator's. Strictly speaking, this process is
a modification, but it can be included in the
debugging process, for the essential property
is the same. .

The last reason is that when we consider
a software production process such as in Fig.
1, the checking process assuring the bug-free
status is a component of the debugging process.

So it is concluded that the debugging
process will last forever and that the debug-
ging tools are indispensable. It is important
to create usful debugging tools, to use them

in a systematic way, and to make them to be

AN

lGive specification j

Bake a program I

<Does it satisfy the specification?>

= Is there any bugs at all?

l

Okay, - the specifi-

[Sorry, there is a bug.
cation satisfied.

= No bugs at all.

Debug it!

= Modify the program.

___‘ End

Fig. 1 A Process of Software Production

our common property.

§3 Lisp—An Attempt to a Programming System

As mentioned previously, Lisp is regarded
as a programming system so that it can tell
what kinds of debugging tools are desirable in
the general programming system.

[1] What is a programming system?

It would be better to give the definition:
a computer supported environment where a pro-
gram is made. The components are editor,
interpreter, compiler, debugger and so on, and
they are systematically integrated.

One may ask "What is the difference from
the time sharing system and the operating sys-
tem?" Well, it lies in the principal aim.
Operating systems help the effective use of
the computing resources. Time sharing systems

provide the on-line, cooperating use of the



computer. Both do not primarily pursue the
program development stage itself.
However, current time sharing systems

such as Multics /3/, TENEX /1/, and UNIX /19/,

provide efficient tools for program construction.

And that Lisp has been developed and used in this

kind of time sharing, on-line environments.
Actually it is very important for a Lisp sys-
tem to be able to invoke such system facili-
ties at any time.

[2] Why Lisp has become a programming system?

1) Lisp is an interpreter language —
Interactiveness.

Lisp program is executed by the inter-
preter.(*) When an error occurs, the inter-
preter halts and does not abandone all the
execution. The user is permitted to investi-
gate the situation and resume the execution.
Here the debugging tools are very useful. Thus
an-line debug is said to be 3 timé efficient
than off-line debug /2/.

2) Lisp has a program-data uniformity —
Modifiability.

Because the Lisp program is expressed and‘
stored in the same structure as data, it is
very easy to write a program to modify the
program. For example, editors, compilers,
pretty-printers, optimizers, translators, and
even interpreter itself can be written in Lisp.

3) Lisp is a functional language —

Modurality.

(*) McCartly says that it was an accident to

have the interpreter /14/.

A Lisp program is a collection of func-
tions. It is natural to incorporate software
tools in the system. Tools are gathered grad-
ually through years and that a user can use
them, refine them, and add new tools by him-

self.

4) Lisp is a common language — Portabili-

Although there are various Lisp systems
and there exist many differences, it is easy

to transfer a Lisp program from one to the

other. Tools written in Lisp are also easy to
transfer. Lisp users can appreciate this
benefit.

[3] wWhat are told about debugging from Lisp?

1) Interactive debugging is very easy.

In a batch environment, it is difficult to
detect and fix the bug because it is impossible
to halt the execution, investigate the situa+
tion, fix the bugs and resume the execution.

2) Incorporated tools are very useful.

If the debugging tools can be invoked only
after the program is discarded, the user will
not use them however efficient they may be.
Tools in the necessary situation are very
valuable.

By the manual modification, another bug
may be planted. The tools and systems to modi-
fy the program are indispensable for the pro-
ductivity progress.

[4] What kinds of influence exist to other
languages and systems?

1) Several new programming languages have

been developed.



Excluding Lisp-based languages such as
Micro-planner /21/ or Conniver /15/, there are
new languages following the Lisp directions
towS.rds a programming system. Smalltalk /5/
and Logo /18/ are good examples. They are CAI
languages which put stress on modification and
debugging of the program.

2) Several tools are available for other
languages.

Pretty-printer is the good example which
is available in Pascal /25/, Fortran /8/, and
PL/I /27/.

3) Micro-computer has introduced a cheap
interactive environment.

Basic is one of the most popular language
in micro-computers, because it has an editor
incorporated. A programming system is most
suitable for this interactive environment. So-
called Lisp machines /12/ can be appreciated

in this viewpoint.

84, Lisp Debugging Tools — Experience

In this section reviewed are Lispl.5/13/,
Interlisp /24/, and Lispl.9/9/.
[1] Lispl.5

Tracer is the only debugging tool. Even-
tually, tracer is a useful tool even today. It
is also useful to analyze the program. See
the discussion in the next section.
[2] Interlisp

The main features of Interlisp debugging
tools came from Teitelman's PILOT system /23/.
They are the followings:

1) DWIM (Do-What-I-Mean) — automatic

spell correction

Misspelled terms (variables or functions)

are automatically corrected. It is done ac-
cording to the following procedure: The sys-—
tem maintains lists of existing terms. When
an unrecognized term (unbound variable or un-
defined function) appears, DWIM searches the
list for the nearest. If the appropriate term
is found within a limited time and distance,
it is returned as the user's intention. It
should be noted that if the search fails or
plural candidates are found, then the error
occurs. And that the user can interrupt the
program any time when he thinks the system
has picked up a wrong one.

This feature is said to be the most
impressing /20/.

2) break package

When an error occurs, the system calls
this package. The user, then, can investigate
and change the status and resume the program.
This package can be explicitly called by the
function BREAK. It is useful to observe the
program behavior.

3) program advising

To modify the existing routines including
system functions, advising facilities are pro-
vided. Without altering the original codes,
some procedures are attached before and after
the function evaluation. Let £(x) be the ob-
ject, Myefore and Mjfiey are such attachments,
then the advised (i.e. modified) function f'
is defined as f' = Myfreyr (£(Mpefore(®)).
Interlisp contains other tools too.

4) Lisp editor

This editor edits Lisp data (S-expres-
sions), iwe, it directly alters the present

codes of the function. Alternative to this



editor is the conjuncted process of source
text editing and function redefinition.

5) Pretty-printer

It clarifies the structure of the program
by indentations.

6) Back-tracer

It edits the stack informations to present
the evaluation steps so far.

7) Program analyzer

A function PRETTYSTRUCTURE tells the re-
lations between functions in the program. It
tells that a function calls so-and~so func-
tions. Maclisp /16/ has a powerful INDEX pack-
age for this purpose.

8) UNDO capability

At the top level, interlisp has a facili-
ty to undo (i.e. cancel) the effect of preced-
ing statements.

[3] Lispl.9 /9/

Although Interlisp is the most powerful
system in the world, it cannot be said to be
the ultimate. Some attempts on Lispl.9 are
valuable.

1) channel system /10/

Input/output facilities in Lispl.9 are
based on the conceptual channel which enables
the following facilities:

(i) Monitoring file I/O at the terminal.

It is easy to detect the bug in fj.le

I1/0.

(ii) Saving terminal I/O to the file.

Both the key-inputs and system—out-
puts can be gathered in the file for the
later analysis.

(iii) Simulating terminal I/O by the file.

Repeating the same test is especial-
ly easy. It is also useful to demonstrate
key-input program when combined the moni-
toring facility.

(iv) Tracer output can be saved on the

separate file.

Voluminous output of the tracer can
be saved without affecting terminal out-
put.

(v) Null output facility can suppress un-

necessary output.
Without changing the program, time
consuming output' can be suppressed.

2) connecting 'system debug and tracer'

Lispl.9 is an evolving system as most
Lisp systems are. It means that a new bug is
always detected, so the fast debugging is
necessary. To this end, Lispl.9 incorporates
a function PTRCE which invokes a system debug
and tracer in TOSBAC-5600 /26/.

The package is a machine word level (not
the Lisp level) debugger. Snapshot, patch,
breakpoint setting, and tracing the machine
word are possible. The user can, at any time,
exit the package and resume the Lisp execu-
tion.

This package includes a statistics pro-
gram for the execution counter of the location.
It is useful to analyze the load of Lisp 1.9

programs .

§5 Lisp Debugging Tools — in the Future

Before predicting the future, we had bet-
ter classify the debugging tools. There are

three classes.



[1] Tools for bug detection

This is the first stage of debugging.
Tracer, break-package, and back-tracer belong
to this. Snapshot and tracing part of the sys-
tem debug and tracer as well as channel system
can also be included. Pretty-printer and pro-
gram analyzer which are usually used to see
that there is no bug are members because they
can tell the existence of a bug.

[2] Tools for bug extermination

DWIM, program advisor, editor, and UNDO
are this kind of tools. Patch facility is the
typical one.

[3] Tools for constructing bug-free program

Up to the present this kind of tools have
not yet incorporated. However, it is one of
the main projects on software engineering and
the many experiences, methodologies and theo-
ries have already accumulated.

Among the above three, the first kind of
tools are popular in many Lisp systems.
Interlisp is famous for its second class of
tools. Then the advanced future system should
incorporate the third kind. Of course, the
first and second tools can be (and should be)
more advanced and refined.

The following themes are occured to the
author:

1) It is necessary to develop tools to
construct bug~-free programs.

Perhaps the most urgent is the specifi-
cation describing and debugging system. Some
specificafion systems are already presented
(eg. /7, 11/), but the experience is not enough

to produce an effective tools.

Automatic programming project is more
ambitious and complete. And much more research
is necessary both on theory and other aspects
(esp. on human interface and its productivity).
2) It is promising to develop an automated

' debugging aid.

Even a limited automatic debugger such as
DWIM is known to be very helpful. So if a lit-
tle more advanced tools are available, they

must be of great use. The debugging process

itself has been researched in CAI/6/ and AL/

22/. The program verification system which
tells the debugger where to stop has been
vigorously researched. The combination of the
two will provide an advanced automatic debug-
ging system.

3) More useful editor is wanted.

As Sandewall stated /20/, the Interlisp
editor is not satisfactory. Perhaps the
future computing environments and advanced
terminal systems will offer various approaches
to invent an ideal editor.

4) Powerful tracer is useful.

Tracer is a classical and even now useful
tool. In the near future, a sophisticated
tracer will be incorporated where conditional
tracing, conditional breaking, conditional
snapshot, and useful statistics will be avail-
able. And the user can edit the trace outputs
so that unnecessary informations can be elimi-
nated. It can be regarded as a sophisticated
program monitor.

5) Intelligent program analyzer is useful.

Program analysis is necessary not only

for the debugging but also for the compiler to



produce an efficient codes. Every experience

should be integrated to make such an analyzer.

§6_Conclusion

Debugging process and programming system
are at first discussed in this paper. Debug-
ging process is indispensable and debugging
tools should be incorporated into the program-
ming system.

Lisp has been developed as a programming
system, and its debugging tools suggest their
status in the future programming system. Con-
cerning actual examples, debugging tools of
Lispl.5, Interlisp, and Lispl.9 are sur-
veyed.

It is predicted that the future efforts
will be paid in the construction of the bug-
free system and the powerful tools such as
editor and tracer which enable fast debugging.

These experiences and experiments in Lisp
will lead to the more ambitious research pro-
blems, i.e. the automatic programming and the
automatic debugging.

It is not long since the programming
system approach was popularly recognized.

Lisp has, howewer, experiences over ten years,
and it is very helpful for everyone who tries
to develop a programming system with high

productivity.

References

/1/ D. G. Bobrow et al. "TENEX, a Paged Time
Sharing System for the PDP-10" CACM, 16, 3
(Mar. 1972).

/2/ F.P. Brooks Jr. "The Mythical Man-Month"

Addison-Wesley (1975).

/3/

/4/

/5/

/6/

/7/

/8/

/9/

/10/

/11/

/12/

/13/

/14/

/15/

F. J. Corbato and V. A. Vyssotsky
"Introduction and overview of the Multics
system" Proc. FJCC (1965).

E. W. Dijkstra "A Discipline of program-
ming"” Prentice-Hall (1976).
A. Goldberg & A. Kay (eds) "Smalltalk-72
Introduction Manual" Xerox PARC, SSL 76-6
(1976) .

I. P. Goldstein "Understanding Simple
Picture Programs" MIT AI-TR 294 (Sep.
1974) .

J. V. Guttarg "The specification and
application to programming abstract data
types" Univ. of Toronto, CSRG-59 (1975).
B. W. Kernighan and P. J. Plauger "Soft-
ware Tools" Addison-Wesley, (1975).

T. Kurockawa "LISPl.9 Programming System"
J. Inf. Proc. Soc. of Japan, 17, 11
(Nov. 1976) . (in Japanese)

T. Kurokawa "Input/Output Facilities in
LISFl.9" SOF;TWARE ~—~— Prac. & Ekp., 8
(1978) .

T. Kurokawa "An Informal Introduction to
Function-class: A programmable Specifica-
tion Technique" unpublished memo
(Jan. 1979).

T. Kurokawa "Lisp Activities in Japan"
unpublished memo (Jan. 1979).

J. McCarthy et al. "LISP 1.5 Programmer's
Manual" MIT Press (1966)

J. McCarthy "History of Lisp" ACM SIGPLAN
Notices, 13, 8 (Aug. 1978).

D. V. McDermott and G. J. Sussman "The

Conniver Reference Manual" MIT AI Memo

259a (1974).



/16/

/17/

/18/

/19/

/20/

/2y

/22/

/23/

/24/

/25/

/26/

/27/

D. A. Moon "MACLISP Reference Manual” MIT
Project MAC (Aug. 1974).

P. Naur et al. "Software Engineering”
Mason/Charter Pub. Inc. (1976).

S. A. Papert "Teaching Children Thinking"
Programmed Learning and Educational Tech-
nology, 9, 5 (1972).

D. M. Ritchie and K. Thompson "The UNIX
Time Sharing System” CACM, 17, 7 (1973).
E. Sandewall "Programming in an Inter-
active Environments: the "LISP" Experi-
ences"™ ACM Comp. Surveys, 10, 1 (1978).
G. J. Sussman et al. "Micro-planner refer-
ence manual" MIT AI Memo 203A (1973).

G.- J. Sussman "A Computational Model of
Skill Acquisition" MIT AI-TR 297 (Aug.
1973) .

W. Teitelman "Toward a programming
laboratory" Proc. lst IJCAI (1969)

also in /17/.

W. Teitelman "Interlisp Reference Manual"
Xerox PARC (1974) .

E. Wada "Current tendencies on software
development tools" Proc. Software Engineer-—
ing Symposium (Jan. 1979) . (in Japanese) .
TOSBAC-5600 TSS System Debug and Tracer,
TOSHIBA.

indent command :in "Multics Programmers
Manual, commands and active functions”

HIS AG92 (Jan. 1975).



