VIPY=7ITH 13 —4
(1980 3 17)

THE CONTROL OF PROCESSORS AND ITS IMPLEMENTING ENVIRONMENT ON THE SIMULATOR FOR
PARALLEL PROCESSING

Kiichi YAMATO, Kenji TODA and Nobuo SAITO
Department of Mathematics, Keio University,
Yokohama, 223 Japan

Abstract-A simulation system for estimating the performance of parallel
processing system is now being developed. The design and implementation
efforts are concentrated on 1) the full flexibility of the network
architecture connecting all of the elements, 2) high precision
simulation about conflict of the bus and the shared memory.

This simulator will be developed on the time-sharing system UNIX
installed on PDP-11/60.

I. INTRODUCTION

The study of parallel processing systems with effectively constructed multiple
processing elements has been studied since the appearance of digital computers.
These systems are mainly used to deal with a large amount of information in a
short time. In the last decade, the progress of the technology of the LSI
produces many types of micro processing unit(MPU)s, with high control mechanisms.
If a number of homogeneous or different kinds of MPUs are connected together to
compose a computing system, it is possible to outweigh the weak points of a
computer system through use of the increased number of MPUs. The application
fields of the MPUs will be spreaded if they are connected to construct a multiple
processor systems or networks. From these points of view, we are developing the
simulator in order to estimate the efficiency of the parallel processing system on
the practical applications. The principles of this simulator are:

1) finding better bus architecture of the simulated system for a given problem;

2) finding more effective structure of the protocol between processors;

3) checking the correctness and saving the history of the data access on the
shared memory.

On this simulator, a processing element is simulated by a generated process. The
synchronization of signals among simulated processors is implemented by proces
switching, which occurs through time slicing or system call. The multi-processor
environment is simulated by the way. We use the UNIX time-sharing system on
PDP-11[1,2] for implementing the environment with many modifications.

Through use of this simulator, we can get many information about the simulated
system for a given problem. For example, the behavior of the data transfer on the
network are reported when a part of an operating system is executed on a
multi-processor computing module.

In this paper, section II describes each elements of the simulation system. In
section III, we treat the conflict and its analysis appearing in the simulated
system. And in section IV is described how this system can be implemented on the
UNIX.

II. CONSTRUCTING ELEMENTS

This system simulates a group of the processors with a single kind of an
architecture. Each element has therefore the same processing power. The kind of
an elementary processor to be simulated is not restricted to a specific one except
for the bit-length of the operand of its instruction set. As each processor plays
a rather important part of a given problem for controlling and calculating, the
1-bit processor or the 4-bit ALU can't be used because of the weak processing
power.

2.1. The processor as an element of the simulated system

In this simulation system, each processor works asynchronously as an element of a
computer complex. And the whole system can work as a MIMD machine[3]. Therefore,
no system clock exists to synchronize the whole processing elements, and the data

~l~

transmission between two processing elements is asynchronous as a general rule[4].
The unit of operation managed by a processor has a variety in various application
field, and the typical applications[5] of the multi-processor system are as
follows:

a) The calculation of matrices is widely known as a typical utilization of the
parallel processor. In this case, the unit of operation is an arithmetic
operation on an element of a matrix. In this field, the processor is required to
have the following abilities. 1) Rather high precision arithmetic operation, 2)
high speed floating point arithmetic operation, 3) the ease of treatment on the
occurrence of abnormal state(overflow,divide-~by-zero etc.), 4) the capability of
inter-processor transmission. As these items tend to be separated from the
function of MPU itself, and if these functional element is recognized as a
processor, the simulated processing element must have the same or more- capability
as modern 16-bit micro-processor.

b) In the application field that is mainly used as a process controller or a
scheduler in the operating systems, the processor aims at the bit manipulation,
the switching of processes, the controlling of the I/O devices and so on. It is
important to resolve the conflict among accesses from multiple processors. Some
computer system has special instrucion repertoire for solving these problems. And
a few modern micro-processors also include these instructions to construct
poly-processor system.

c) In the application having a large amount of data transmission among
processors like as the sorting problem or as the controlling of multiple
processors, the performance is not affected by the ability of numerical data
processing. But the control mechanism for sharing the buses among processors
needs to be simple and reliable.

Concerning about these points, we explain the architectures of 2Z-8000[6] and
PDP-11.

1) %-8001

This processor has 16 general 16-bit registers and 8M-byte addressing capability.
The memory consists of 128 segments with 64k byte per segments. As the floating
point instruction does not exist in the instruction set, this processor isn't
suitable to operate floating point wvalue. But the rich instruction set make it
possible to implement powerful software for controlling a bus. For example, the
instruction ISET(Test and SET) can be used as a semaphore. The MBIT, MREQ, MSET,
MRES are used to construct multi-micro processors, and the signal _{(for
synchronizing MPUs) assigned on a pin of the MPU can be controlled by these
instructions directly. In our system, the fairy high precision simulator of
Z-8001 1is used to estimate the capability and performance of parallel processing
systems in high precision.

2) PDP-11

The typical mini-computer PDP-1ll which is already used in C.mmp and Cm* as the
element of real poly-processor, is used in practice and estimate the efficiency of
the network. Few speciality exist caused by in using PDP-ll. Since there is no
instruction to implement a semaphore for exclusive access on PDP-11, the extention
about the memory reference is also included in the simulation system.

2,2. The implementation of memory
The difficulty about the implementation of the memory system depends on the
connection method in the simulated system. If the memory space of the simulated
processor is greater than the space of the base system implementing the simulator,
the virtual space needs to be realized. The following problems exist in the
implementation of the memory:

1) The bit length of the unit of the memory reference;

2) The capacity of memories;

3) The problem about the access rights from processor;

4) The prevention of the simultaneous access.
The items 1) and 2) have no problem as concerned with this simulator. As 3) is
concerned with the connection between processor and memory, it need not be treated
in the simulator of the memory. The item 4) is the main problem of the memory
processing. If more than two processors send reading or writing requests
simultaneously, the mechanism of the memory is made to act on one of these
requests, the rejected one being failed. Consequently, for correct management of
the simultaneous access, these demands are queued in the memory ssytem and treat
them 1in order. On simulation of these events, it is necessary to regulate these
accesses so that they are handled in the order of the simulator's clock.

~Om~

2.3. The linking between processor and memory

The exchange of the control signal between processors is used to gain correct
result on parallel processing[7,8]. Many linking methcds have been proposed. The
communication speed with the bus connection depends on two factors. One is the
practical procedure of transmission on hardware, as the confirmation of linking
and the transmission of data and so on. Another is a number of processors linked
with the common bus. One of the purposes of this system is to decide the design
of the bus network; to arrange the processors on the network from the standpoint
of the speed and the reliability. This simulator examines the correctness of bus
utilization in each exchange of clustered data or signal. The simulator detects
the conflict on the bus, tells it to the report generator and enter these requests
in the queue of each transacting process. A table(we call it the linking table)
is provided to express the 1linking of processors and memories in a simulated
system. The linking table is shown in fig. 2-1. When the bus is requested by a
processor, the request causes the simulation system to verify the bus utilization
by traversing the pertinent pointer in the table. And if the bus is free, the
transmission success immediately and the simulator reports the transaction.

BHgb1e Pragsiec” Shgggd-memory
bus0 Processor(
bus?2
' bus0 busT 3
1
M 0 | [l I
emory Shared
Proc.0 Proc.1l Memory0
busl .
- 1
r—-——-o
Processorl
1
bus2
et
i ;——————‘_"‘" 1]
v

fig. 2-1 Linking Table

III. ANALYSIS OF CONFLICT
The conflict is the main problem on this simulator. It is defined as follows.

3.1. The definition of the conflict

The system, that simulates resource sharing between processors, inspects and
manages the conflict of requests to estimate the drop of efficiency by the common
use of the resource. The correctness about the simultaneous access can also be
detected.

The judgement on the conflict in this system depends on the kind of the elementary
processor to be simulated. These are defined as follows:
1) On the Z-8001 simulator
The simulator for the Z-8001 uses one clock cycle of the MPU as a tick of the
clock of simulation system. The analyzer of the bus conflict first treats
requests from the processors on the common bus. The conflict occurs on the memory
unit, if the memory has multiple ports, and each port is connected to a different
bus.

a) The conflict of different address reference.

If the preceding reference was read or write mode, the conflict does not occur.

If the mode is read-modify-write,

~3~

t{ref) < t(conf) £ t(ref) + 18,

where t(ref) is the time when the preceding reference occurred, and t{conf) is the
time when the conflict occurred. 1In order to keep the correctness of this memory,
it is necessary to close the memory circuit during 18 memory cycles(the maximum 18
clock cycles needs to execute a TSET instruction).

b) The conflict of same address reference if both the preceding and conflicted
reference are read mode,

t(ref) = t(conf),
if either of the preceding or conflicted reference is write mode,
t(ref) = t(conf),
and if the preceding mode is read-modify-write,
t(ref) < t(conf) < t(ref)+18.
If both the read and write operations are executed at one time, these accesses are
logically invalid. The simulator reports following informations on the occurrence

of this situation: a) the time when the conflict was occurred based on the «clock
cf the simulator, b) the identifier of the processor requesting this data and c)

the address and its contents. Read Read
2) On the PDP-11 Memory Memory
The chief purpose of using PDP-11 itself Mode SRC Time Cycle DST Time (A) Cycle
as the element of the multi-processor 0 00 0 ©0 0
system is to efficiently examine the 1 51 1 .51 1
behaviour of the simulated system and 2 ot > o :
its program. Since the real processor 4 68 1 ‘68 7
is used as a processing element, high 5 1.2 2 1.2 2
precision hardware clock is required to § e H 38 2
measure the time the request is , -

generated, It requires nearly the same ,;,10 3.1 The cycle time of the PDP-11/60
precision as the system clock of the

PDP-11. Table 3-1 shows the cycle time

of the PDP-11/60.19] The minimum conflict 0,1
execution time for referring a memory is t. ¢ ti+1
about 1.2 micro-seconds in mov g —oizl o1 o

1

i
simulator, the count-up frequency of the ‘
clock for the measure of the estimation j Accemﬁ
is about 100kHz to 1MHz.[10] The tick i — Access
for confirming the occurrence of the J i 1
conflict is therefore ‘ !

1/ (the count-up frequency) seconds. : L ac

The requests occurred within one tick Il cessg
are regarded as a conflict. This means 17T read-modify-write cycle
that it simulates the pseudo processing ‘FF—'read<wc1e
device synchronized with a tick of the . \ . - s
clock.(See fig. 3-1) fig. 3-1 Conflict of the machine

instruction (e.g. mov r2;A). In this : l
|

3.2. The conflict about the shared memory
The assignment of the memory space in this simulator is as follows.

1) The local memory space : the local memory belongs only to a processor. The
same address space of the local memory is assigned to each processor.

2) The shared memory space : the rest of the address space is assigned to the
shared memory. The shared memory may be separated into some memory units., The
bus address space is therefore,

L + summention of S(i) < A (i = 1,2;,..., N),

where S(i) is the size of the shared memory i, L is of the local memory space and
A specifies the whole space on the common bus.

The procedure dealing with the shared memory is as follows.
1) The access to the shared memory initiates the memory-process that treats the
conflict in the strict execution and report the bus utilization.

Shared ———

Local =1 J’rocessor
-
m Memory [—- y

Memory

é common bus 0

Common bus 1

Local Bus Inter- Processor
Memory H face Unit

(BIU) ﬂ

fig. 3-2 Processing Elements and its Metwork

2) The memory-process saves information about this access. And the process
executes the actual access when no other access exists. (The reference is
performed with read, write or read-modify-write mode.)

3) If one of these simulated processors doesn't pass the simulated clock time,
the execution of the caller processor is suspended, and the information about this
reference is held. The least recent processor on the time scale of the simulation
clock is resumed.

4) The simultaneous access is processed in the order of occurrence with the
report of the conflict, if all of the processors concerned have already passed the
time.

3.3. The conflict of the bus

The conflict of the bus occupation is an unavoidable problem when the system uses
the common bus architecture. On the real hardware, the bus management mechanism
called the arbiter controls the occupation of the bus. On this simulator, the
supervising program to control the memory and the processor does this work, when
processors or memories request the same bus. Its procedure is as follows:

1) look up the utilizing situation of the bus linked to the processor. If the
bus isn't free, suspend the execution until the bus occupation finishes.
Otherwise,

2) search the least recent processor. And if the least recent is the caller,
it occupies the bus until the access cycle ends. The caller processor passes
according to the kind of the request (and it may cause new conflicts to other
suspended processor) .

3) Look up the destination element that the signal 1is transmitted. If it
isn't found on the bus, the fail signal is returned to the caller processor and
the occupation is teminated. Otherwise,

4) if no conflict occurs at the termination of the occupation, continue the
least recent processor. If the conflicted processor is found, this procedure is
applied.

IV. THE INPLEMENTATION ON UNIX

The basic elements of this simulator are, 1) processor, 2) memory, 3) g¢logk, 4)
network and signal. As it is difficult to describe complex simulated system only
with these low level elements, we append the following functions: 1) wait, 2)
signal, 3) kill, 4) packet. The following notes are the detailed description
about them. (As the strict implementation is different between the 2%-8001 and the
PDP-11 simulator, both of them are described occasionally.)

~F~

4.1, Processor

Each processor is implemented by a process. The process creation on the UNIX is
performed with the fork system call (we <call these processes as the
P.P. (Psendo-Processor)). As the created process(called child process) is a copy
of that of the caller of fork, a lot of areas are wasted in the main memory and in
the process swapping device when creating many processes. It also increases the
switching time of the processes. In order to restrain the size of these
processes, it generates a individual executable module to be executed in a child
process. These modules are executed by the execv system call(in the UNIX). This
call replace the contents of a caller process with the specified executable
module. Following problems are caused when employing this way:

1) The method how to make the individual executable modules written as a
procedure in the program.

2) The input/output channels opened by the parent process are commonly used in
the ¢hild process, and enables the pipe inter-process channel among c¢hild and
parent processes. But ezecv closes all of the I/O channels when it is requested.

3) The whole amount of parameters of the execv system call are 512 characters.
It is not enough to copy the data in shared memory or in the local memory of the
parent process as the initial value of the 1local variables of the child
process(for decreasing the reference of the shared memory).

The discussion of these problems are as follows: 1) all the procedures executed on
each processors are build as the individual functions. When the c¢hild process is
created, each process executes one of these functions. Each body of the functions
is built as the individual executable module on UNIX. At this time, as each
module is loaded as the reenterant program for common use, rather many (hundreds)
processors can be simulated on this system.

2) and 3) the common file mechanism used by the UNIX (called pipe) can't be
expected since the child process is initiated by the execv system call. The new
protocol mechanism is provided for the inter-process communication. This
simulator uses the above protocol implicitly.

4.2. Memory

The management of memory is left to the UNIX supervisor and language-C except for
the shared memory scheme. In language-C, the variables allocated to a function
are dispatched on the stack and are referenced by the relative address reference.
This 1induces the pureness of the function data space, and disabling the external
reference to the local space.

The reference to the shared memory generates a system call with : 1) the address
in the shared memory, 2) reference mode and 3) the data (only write). The way of
implementing the shared memory on the PDP-11 simulator, in implementing the memory
management failure violation of the processor seems to be used, but it needs the
interpretation of the violating instructions.

4.3. Clock

1) Z-8001 : The clock is implemented by software together with the execution of
the processor simulator. The time slicing is also executed by using this clock.
2) PDP-11 : For partial interpretation, real clock is used for synchronizing the
P.P. and for the time slicing. This clock is set to zero when the P.P., is
initiated and is counted up on each processor. And this clock is suspended when
the control fall into the simulator or into the UNIX system. The clock is resumed
when the execution of the P.P. 1is restarted. It is set to the most recent
suspended time when the processor is switched. Furthermore, this clock is used
for time slicing to prevent for a processor from being simulated too 1long. It
decrease the difference between simulated and the real execution.

In the UNIX, the line clock 1is used to schedule processes and to get time
information. But as the tick of this clock is 20ms, it is useless to examine
conflict. The interval timer is used for this aim. The count up pulse of the
interval timer is strict internal 100kHz or higher external shimidt-triggered
pulse.

4.4 Network)
In section II, we discussed the bus network structure that can be simulated on
this simulator. There need to be one process inspect the situation of the bus
occupation. This process gives following data to the report generating process;
the data through the network are:

1) address reference mode on referring the shared memory

2) received signal on communicating between processors;

(The receiver identifier can be treated as a special address.)
this process appends the following data:

1) referring time, processor-ID., bus-ID. being used,

2) referring time, processor-ID. of the sender, bus-ID. being used.

~G~

4.5. The processor control functions.
The following tools are provided to control the P.P.s.

1) wait(processor_id)
Through this function, the calling processor waits until a signal is brought from
the processor specified with the ‘'processor_id'. If the id is -1, the sender
processor id is not checked. Therefore a signal from any processor restarts the
suspended execution. The return value of wait system call is the received signal
value(l6-bit unsigned integer value on this system). The wait is considered to be
the conflict, generated by the caller processor, and the simulator treats it in
same way as as the conflict.

2) signal(signo, func) , request(signo, processor_id)
These functions are used to transmit signals between two processors to synchronize
them. The function signal is analogous and is widely extended from the signal in
the UNIX. The function reqguest is used to load a signal 'signo' on the common bus
and send it to the processor specified by the parameter 'processor_id'. The
conflict and the link of the bus has been described in section 3.3. The signal
generated by the request is received by the wait or by the function specified by
the signal. The signal cause an inerrruption to a specified function entry
'func', depending on the condition of the interrupted processor. This interrupt
becomes effective when the interrupted processor is resumed at the next activity.

wait (1) l

—*j request(s,0)
signal(g,f)

]
T)
! i
i request (h,0) lidle in scheduler
request (2,0 | BEEEE—
B
t]

b) by request

1
a) by wait and by interrupt

fig. 4-1 The relation of signal, request and wait

Fig. 4-1 explains the relation among signal, request and wait. The use of the
wait increase the precision of the simulation, but it decreases the flexibility by
interrupt programming.

3) kill(processor_id, range)
The kill system call cause termination of the P.P, specified by the
'processor_id’'. The slight difference between the UNIX kill and ours is on the
effective range. The kill on the UNIX terminates only the specified process.
Therefore the termination of the parent process does not affect the execution of
the child processes. The programmer of the simulated system must supervise the
relation between parent and ¢hild processors. The kill in this system kills all
of the decendant P.P.s if the parameter 'range' isn't =zero. This call c¢an be
realized the algorithms that use the restricted numbers of processors efficiently.

4) packet
The inter-processor packet protocol 1is implemented to transfer the data set
between arbitrary linked processors. The driver implements a full-duplex
communication. There is no need to check errors on transmission. The necessary
function for this protocol is that all arriving packets are queued in the input
area, of the packet driving process. The long time bus occupation is caused by
the packet transmission. The packet transmission is processed when the scheduler
of the P.P.s on the simulator becomes active. The transmission of the packet is
held up and queued in each bus while a processor is simulated. The system calls
about the packet are as follows:

1) pkopen(proc_id) : open packet channel to 'proc_id’'.

2) pkread(pk_id,buffer,count) : read 'count' bytes into 'buffer' from channel
‘pk_id'.

3) pkwrite(pk_id,buffer,count) : load 'count' bytes from 'buffer’' and transfer
to 'pk_id'.

4) pkclose(pk_id) : free the channel 'pk_id.
The packet driver is initiated by the simulator and sleeps until the pkread or
pkwrite system call is executed. The mechanisms of sleep and wakeup are analogous
to the same UNIX system functions.

~T~

Many functions of the UNIX are available to implement this simulator. The
following system structure is specially favorable to construct this simulator:

1) Multi-process environment: The users can create restricted numbers of
processes by executing the fork system call. The communication is avaliable among
parent and child processes. And as the communication procedure is written
explicitly, there is no implicit communication effect.

2) The facility to implement the reentrant pure procedure program easily and
efficiently : The program written in language~C becomes pure without rewriting, if
each variable is defined as the local variable. And the execv system call enables
to use the reentrant procedure efficiently.

3) Since almost all of the system is written in language-C, it is easy to modify
the system.

4) Bs it is the small size operating system, it is easy to append functions.

CURRENT RESEARCH

This system is used not only for the estimation of the linking of processors but
also for the software tool which is used to verify the correctness of the
simultaneous access and is used as the debugger of the system software. As the
information about the processes and the bus are held in the system, the number of
simulated processor and the complexity of the network depends on the size of the
simulation system. Therefore in the UNIX, the increasing of the system size
causes the decreasing of the capability. 1In order to prevent this problem, the
virtualize of the process information is now investigating. And moving some parts
of the simulator into the user area is also being persude. Furthermore in this
paper, we do not concern about the description language, but the use of the
extended version of language-C is also being studied.

REFERRENCES
[1] "The Bell System Technical Journal," Jul-Aug 1978 ,vol.57, No. 6, Part 2
[2] "Documents for Use with the UNIX Time-Sharing System, " (Sixth Edition)
[3] M.J. Flynn ,"Very high speed computing systems,"” Proc. IEEE, vo0l.54,
pp.1901-1909,
[4] "VAX11/780 Architecture Handbook," vol. 1, 1977-1978.
[5] P.A. Gilmore, "Lecture Notes in Computer Science," No.24 pp.272-290, 1374
[6] "Am 28000 Family Reference Manual," Advanced Micro device inc., 1979
[7] J.R. McGraw, G.R.Andrews, "Access Control in Parallel Programs," IEEE Trans.
on Soft. Eng. vol.SE-5, No.l, Jan. 1979 pp.1-9.
[8] R.B. Kieburtz, A. Silberscatz, "Capability Managers," IEEE Trans. on Soft.
Eng. vol.SE-4, No.6, Nov 1978 pp467-477
{9] "PDP-11/60 Processor Handbook," Digital Equipmemt Corp. 1977
[10] "PDP-11 Peripherals Handbook," Digital Equipment Corp. 1376

Control flow
<t==—————pData flow

Packet Driver Schedule for conflict

“Schedule for pseudo
processor

Scheduler
in Simulator

D Nt Shared }:[II}‘J?
Processors \\ >\ Memory
Ss— T[[[[© Bug 2geess

fig. 4-2 Simulation system on the UNIX

~8~

