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 Abstract: Collaborative learning fosters the ability to creatively solve problems in collaboration with other learners. 

Researchers in learning science have transcribed learners’ speech to qualitatively analyze collaborative learning to re-

veal various patterns that increase learning performance. Although prior studies have identified speakers to support 

the process of transcription, those studies were limited in simultaneously identifying multiple speakers. We propose a 

novel speaker-identification algorithm that can simultaneously recognize multiple speakers using business-card-type 

sensors. The algorithm can remove ambient noise with low-cost sensors and still identify multiple simultaneous 

speakers. The experimental evaluations show that the algorithm accurately identifies simultaneous multiple speakers 

in a multi-person activity under conditions with varying numbers of users, environmental noise, and users’ short utter-

ances.

 Keywords: collaborative learning, Internet of Things (IoT), sensor networks, speaker identification, time synchroni-
zation

1.　 Introduction

Collaborative learning is a methodology that involves teaching 

and learning in groups of learners working together for prob-

lem-solving. Collaboration leads learners to integrate new ideas 

from other learners and enhance their social abilities through in-

teraction with other learners. Researchers in learning science 

have qualitatively analyzed collaborative learning and revealed 

various patterns to increase learning performance [2], [12], [15], 

[16], [29], [30], [37], [42]. For example, the study in [29] found 

that learners using identical problem-solving methods tend to 

consistently produce higher learning outcomes. Through the pro-

cess of collaborative learning analysis, transcription is an essen-

tial step for accurate analysis of collaboration. However, the 

transcription process was costly both financially and in human 

time because the researchers were forced to repeatedly watch the 

recorded video of collaborative learning and record the speech 

timing.

Speaker identification is a possible solution for reducing tran-

scription difficulties. While most studies identify a speaker with 

audio data sampled at 8 kHz or more in the field of speaker rec-

ognition [1], [4]-[7], [25], [27], [28], [34], [44], several studies 

contribute to speaker identification with lower-sampled sound 

pressure acquired from IoT sensors for collaborative learning 

analysis [48]-[51]. Lower-sampled sound pressure is processable 

even in IoT sensors which mount a small and low-spec micro-

controller owing to the small size. However, the studies are ham-

pered by the situation that multiple users simultaneously speak 

such as speech overlap in turn-taking [12], [16], [42]. Such over-

sight causes inaccurate results of collaborative learning analysis.

Recent work has however demonstrated that a single speaker 
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Fig. 1　A snapshot of collaborative learning [49].
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is accurately identified with lower-sampled sound pressure ac-

quired from IoT sensors called Sensor-based Regulation Profiler 

Badges (SRP Badges) [51]. The study accurately distinguishes 

speech from the owner or other users with speech threshold in an 

environment with a single speaker at most. A question therefore 

is why not just replicate the threshold-based speaker identifica-

tion to distinguish multiple speakers and non-speakers? There is 

an issue to apply the threshold-based speaker identification to an 

environment with multiple speakers.

The issue is exclusion of k out of n (1  ≤    k <   n) speakers as 

noise. The study in [51] regards a user whose detected speech is 

the longest as a speaker in each speech-estimated section. If the 

study encounters the situation that k out of n multiple users si-

multaneously speak, the detected speech of speakers will stretch 

in each section. However, the algorithm extracts only a user 

whose detected speech is the longest as a speaker in each sec-

tion. The algorithm finally ignores other speakers while their de-

tected speech is relatively long.

To solve the above issue, this paper proposes a novel 

multi-speaker identification algorithm for SRP Badges. The al-

gorithm: 1) detects speech sections where at least one user 

speaks, 2) judges all users’ speech in each speech section, and 3) 

divides speakers and non-speakers in each speech section when-

ever the second step does not judge all users’ speech. The three 

steps algorithm accurately identifies multiple speakers with 

three-step speaker identification to clearly distinguish speakers 

and non-speakers. Experimental evaluations show that the algo-

rithm follows the accuracy for single-speaker identification with 

SRP Badge [51] and accurately identifies multiple speakers with 

SRP Badge under different numbers of users, environmental 

noise, and users’ short utterances.

This study has the following major contributions to the litera-

ture:

 ・  Our research is the first study on simultaneous multi-speak-

er identification using mobile devices with low price and 

low power consumption.

 ・  The proposed algorithm clearly distinguishes speakers and 

non-speakers based on the differences in sound pressure ac-

quired from IoT sensors. The algorithm consists of three 

steps for speaker identification: speech section estimation, 

all-speakers judgment, and speaker identification.

 ・  We quantitatively show the validity of our proposed speaker 

identification with experimental evaluations. Experimental 

evaluations show that the algorithm follows single-speaker 

identification with the IoT sensors [51] and accurately iden-

tifies multiple speakers with the IoT sensors in situations 

where there are different numbers of users, environmental 

noise, and users’ short utterances.

The remainder of this paper is organized as follows: Section 2 

describes related works. Section 3 presents the proposed algo-

rithm for multiple-speaker identification. Experimental evalua-

tions are conducted in Section 4. Section 5 finally concludes this 

paper.

2.　 Related Works

This study is related to studies on speaker diarization and 

speaker recognition.

2.1　 Speaker Diarization

Studies on speaker diarization [11], [13], [14], [19], [22]-[24], 

[32], [39], [40], [45], [47], [54]-[56] annotates audio with speak-

er labels by estimating how many users speak and assigning 

speech segments to each speaker. Speaker diarization has been 

applied to a variety of domains, such as telephone conversa-

tions [20], broadcast news [18], and meetings [10]. For example, 

the study in [10] proposes different architectures for information 

bottleneck-based diarization systems focusing on segment ini-

tialization and speaker discriminative representation and 

achieves a significant absolute improvement on standard meeting 

datasets. While those studies detect multiple speakers with re-

corded voices sampled at the high frequency of several kHz or 

more, this study identifies multiple speakers with sound pressure 

sampled at 100 Hz. Lower-sampled sound pressure is process-

able even in IoT sensors which mount a small and low-spec mi-

crocontroller owing to the small size.

2.2　 Speaker Recognition

Speaker recognition refers to two different tasks: speaker veri-

fication and speaker identification. Studies on speaker verifica-

tion [3], [8], [26], [31], [35], [41], [53] compare the voice of a 

speaker with that of a pre-registered person for authentication. 

Speaker verification is used for Internet of things (IoT) device 

authentication [38], network security [46], and user authentica-

tion [52]. For example, the study in [8] combines mel-frequency 

cepstral coefficients (MFCC) and linear predictive coding (LPC) 

to improve the performance of speaker verification for low-qual-

ity input speech signals. Studies on speaker identification [1], 

[4]-[7], [25], [27], [28], [34], [44] determine the speaker by 

comparing the voice of each speaker with the voice of a pre-reg-

istered person. Speaker identification has been applied to video 

conferences [43], criminal investigations [17], and television 

programs [33]. For example, the study in [43] proposes a method 

for robust speaker identification by focusing on a dominant 

speaker in a video conference, partially discarding information 

arising from inactive participants, and reducing the interference 

coming from their temporary speech.
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While the above studies verify or identify a speaker with au-

dio data sampled at 8 kHz or more, some studies [21], [48]-[51] 

identify a speaker with lower-sampled sound pressure acquired 

by IoT sensors. Lower-sampled sound pressure is processable 

even in IoT sensors that mount a small and low-spec microcon-

troller owing to the small size. For example, Rhythm [21] devel-

ops a business-card-type sensor called Rhythm Badge for speak-

er identification. Rhythm Badge consumes less power since it 

samples sound pressure at 700 Hz. Sensor-based Regulation Pro-

filer (SRP) [49], [51] identifies a speaker with a novel algorithm 

for a business-card-type sensor called Sensor-based Regulation 

Profiler Badge (SRP Badge) to support collaborative learning 

analysis. The study in [49] showed SRP reduced analysis costs 

of collaborative learning in actual learning environments partly 

owing to speaker identification [51]. The SRP Badge mounts a 

peak-hold circuit to accurately detect the speech section and an 

RF module to synchronize across the sensors. SRP identifies a 

speaker more accurately than Rhythm using a sound pressure 

sampled at 100 Hz. However, the studies do not identify multiple 

speakers simultaneously. We propose a novel speaker identifica-

tion algorithm for the SRP Badge [51] to simultaneously detect 

multiple speakers. The proposed algorithm accurately identifies 

multiple speakers who simultaneously speak with three steps 1) 

speech section estimation, 2) all-speakers judgment, and 3) 

speaker identification. Our experiments demonstrate that these 

three steps improve the accuracy of speaker identification for si-

multaneous speech.

3.　 Proposed System: Speaker Identification

3.1　 Overview

Figure 2 shows an overview of multi-speaker identification 

with the proposed algorithm. We include an IoT badge named 

Sensor-based Regulation Profiler Badge (SRP Badge) [51] to 

identify speakers with sound pressure data. SRP Badge is an IoT 

badge to be worn on the chest of each learner. SRP Badge 

mounts an accelerometer, an infrared sensor, and a sound pres-

sure sensor. The badge can continuously run for 24 hours with a 

lithium-ion battery. INMP510 analog microphone from TDK is 

used as the sound pressure sensor for our proposed algorithm. 

INMP510 has a frequency response from 60 Hz to 20000 Hz in 

the conditions from low to high frequency －3 dB point. SRP 

Badge finally records only sound pressure at 100 Hz from the 

acquired voice with INMP510. In addition, SRP Badge precisely 

synchronizes the sound pressure data with other SRP Badges 

owing to a wireless synchronization module. We employ the fol-

lowing steps to identify the speakers with sound pressure data 

acquired from SRP Badges as shown in Fig. 2.

( 1 )  Distribute SRP Badges to learners before a collaborative 

learning activity

( 2 )  Acquire sound pressure signals from the learners with the 

SRP Badges during the learning activity

( 3 )  Collect the SRP Badges from the learners

( 4 )  Extract the sound pressure signals from the collected SRP 

Badges

( 5 )  Feed the sound pressure signals into the proposed speaker 

identification algorithm

( 6 )  Display the identification results with the proposed algo-

rithms

( 7 )  Transcribe the learning activity with the identification re-

sults

( 8 )  Analyze the learning activity with the transcription results

3.2　 Speaker Identification Algorithm

Figure 3 shows an overview of the proposed speaker identifi-

Fig. 2　Overview of multi-speaker identification with the proposed algorithm.

© 2023 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing　Vol.31



cation algorithm. The algorithm consists of three steps: 1) 

speech section estimation, 2) all-speakers judgment, and 3) 

speaker identification.

Speech Section Estimation

The first step estimates the presence or absence of users’ 
speech from the acquired sound pressure signals for all the users’ 
sensors. The algorithm finds the minimum value of sound pres-

sure for all sensors and subtracts the minimum value from each 

value of sound pressure as a zero-point correction. The algorithm 

then labels whether more than one user is speaking using sliding 

windows for the sound pressure of each user acquired from the 

zero-point correction for each window. Algorithm 1 shows the 

process of labeling in Figure 3, and Table 1 lists the notation of 

the algorithm. The labeling algorithm outputs the array L repre-

senting “the 1–0 data for each user” from the set of all sensor 

IDs U and the set of the sound pressure data from all the sensors 

P = {P1,  P2,   ···  ,  P|U|}. Each window W finds the maximum val-

ue of sound pressure m for each sensor in line6. If the maximum 

value m in window W does not exceed the speech threshold ηs 

in all sensors, the algorithm regards window W as no speech sec-

tion across the users, and the window slides in line16. If the val-

ue m exceeds the speech threshold ηs, the algorithm updates a 

threshold ηm as m ∗ 0.1 in line8 based on the study in [51]. The 

algorithm compares each sound pressure in a sensor with the 

threshold ηm and assigns labels 1 or 0 if the sound pressure is 

higher or lower than the threshold ηm in lines 9–13. The algo-

rithm finally replaces the corresponding element in array Ld with 

the label w in window W in line14. We call the data acquired 

Fig. 3　Overview of the speaker identification algorithm.

Table 1　Notation.
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from the above pre-processing “the 1–0 data for each user.”The 

speech labels for each sensor are corrected with the 1–0 data for 

each user. The algorithm fills labels 1 in a section with continu-

ous labels 0 within 90 ms between labels 1 as the middle of a 

speech in the 1–0 data for each user. The algorithm then replaces 

continuous labels 1 within 150 ms with labels 0 in a section, as-

suming that the section includes false speech caused by ambient 

noise. The acquired labels for each user are logically summed 

each time and combined as scalar binary data. We finally extract 

the binary data acquired from the above speech section estima-

tion named “the speech section data.”
All-Speakers Judgment

The second step judges whether all users are speaking in each 

speech section by combining the 1–0 data for each user and 

speech section data. The algorithm focuses on each section 

where a user is considered to speak based on the speech section 

data. Each speech section calculates the threshold based on the 

maximum and minimum sound pressure for all sensors and 

judges that all users are speaking if the sound pressure of all sen-

sors exceeds the threshold. Algorithm 2 shows the procedure for 

all-speakers judgments in Figure 3, and Table 1 lists the notation 

of the algorithm. The judgment algorithm outputs the array A, 

which represents the result of all users’ speech from the set of all 

sensor IDs U, the speech sections S extracted from 1) speech 

section estimation, and the set of the sound pressure data from 

all the sensors P = {P1,  P2,  ···,  P|U|}. The algorithm finds the 

minimum sound pressure pmin from 100 ms before and after each 

speech section in all the sensors to estimate the noise floor in 

line3. Although the speech section is considered as enough to get 

the minimum sound pressure, we set the inclusive section with 

the margin of 100 ms to find the minimum in case. The algo-

rithm also finds the maximum sound pressure pmax from each 

speech section in all sensors in line4. Based on the values of pmin 

and pmax, the algorithm sets the threshold for all users’ speech  

ηS as pmin + (pmax − pmin) ∗ 0.95 in line5. We chose the 

best parameter for the speech threshold ηS as 0.95, which did 

not decrease the accuracy so much and would prevent the lenient 

judgment of all-users speech. If the speech section for all sensors 

exceeds the threshold ηS, the algorithm judges that all users are 

speaking in the speech section S and sets the label1 for all users’ 
speech in section S in lines6–11. Finally, the algorithm returns 

the labels for all users’ speech in the all-speech sections A.

Speaker Identification

The third step determines who is speaking in each speech sec-

tion using an averaged, relativized, and base-adjusted sound 

pressure. Each speech section estimates where a user speaks 

based on the speech section data. The algorithm judges each us-

er’s speech using the ratio of sound pressure compared to the 

speech threshold. The averaged sound pressure for each sensor is 

calculated using sliding windows with a window size of 0.5 s 

and a slide width of 0.01 s. We note that we set the window size 

and the slide width to finely extract changing simultaneous 

speech by multiple speakers. The algorithm identifies speakers 

with the averaged sound pressures for all users Pavg. Algorithm 3 

shows the procedure for speaker identification with averaged 

sound pressure in Figure 3, and Table 1 lists the notation of the 

algorithm. The identification algorithm outputs the array J, 

which represents the judged speech labels for each user from the 
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set of all sensor IDs U, the speech sections S extracted from 1) 

speech section estimation, and the averaged sound pressure data 

from all the sensors Pavg = {P 1avg , P 2avg , · · · , P|U|avg
}. The 

algorithm sets the speech threshold ηr based on the number of 

sensors U in line4. The algorithm then calculates the sound pres-

sure ratio of each sensor for all sensors r based on the averaged 

sound pressure for each sensor p ∈ Pdavg at each time ti in the 

speech section S ∈   S in line 9. The offset in each sensor δ is 

calculated based on the difference between the averaged sound 

pressure ratio of each sensor in all non-speech sections ¬S and 

the speech threshold ηr as a base adjustment in line10. The al-

gorithm subtracts the offset in each sensor δ from the sound 

pressure ratio of each sensor r in line11. The algorithm then 

judges multiple speakers in each speech section S ∈   S using a 

two-step speaker identification with the averaged and base-ad-

justed ratio rbase. If the ratio rbase for sensor d exceeds the sum-

mation of the threshold ηr and the allowable error 0.01 in the 

speech section S, the first algorithm judges that the user with 

sensor d speaks in section S in lines12–15. The first judgment 

detects clear speech with only a few people speaking. We chose 

the best parameter for the threshold ηr as 0.01, which did not 

decrease the accuracy so much and would prevent the judgment 

of noise as speech. If the first algorithm judges that no one is 

speaking in the speech section S, the second algorithm judges 

multiple speakers in the same way as the first judgment with an 

allowable error of －0.001 in section S in lines18–22. The sec-

ond judgment detects ambiguous speech with many people 

speaking. We experimentally chose the parameter as 0.001 to set 

the threshold lower than the first threshold not to miss the am-

biguous speech. Finally, the algorithm returns the speech labels 

for each sensor J.

4.　 Evaluation: Speaker Identification Accuracy

We experimentally evaluated the accuracy of the proposed al-

gorithm for detecting simultaneous speech using sound pressure 

data acquired from SRP Badges. We experimented in a confer-

ence room considering varying numbers of users, environmental 

noises, and users’ short utterances. We note that our study sup-

poses a situation under environmental noises from video materi-

al [9] learners play in collaborative learning activities. Subjects 

were male university students in their early 20 s. Each dimension 

of the room was 10.6 m, 7.05 m, and 2.65 m, respectively. We 

considered the influence of reverberation in the room supposed 

to be used in collaborative learning. Each user wore SRP Badge 

on his chest and sat on a chair 1.50 m away from adjacent users. 

We set a synchronizer on a table at the center of the users for 

time synchronization between the sensors. For the experiments 

with long and short utterances, we prepared two types of speech 

scripts for each user [51]. Each script included 15 sentences in 

English. Specifically, all users spoke a sentence in the script in 

order with a two-second interval. After all the users spoke a sen-

tence, the users started to speak the next sentence. We changed 

all combinations of users who simultaneously spoke in each sen-

tence. For example, when there are three users in an experiment, 

the combinations are as follows:

 ・  One user speaks, and the two others do not speak

 ・  Two users simultaneously speak and the other does not 

speak

 ・  Three users simultaneously speak

In each case, we changed all combinations of speakers and 

non-speakers by considering the difference in users’ voice char-

acteristics.

We compared the speaker identification accuracy of our pro-

posed scheme with three comparison schemes, “Scheme with 

absolute sound pressure (absolute scheme),” “Scheme with rela-

tive sound pressure (relative scheme),” and “Extended scheme 

of the study in [21] (Rhythm scheme).” The absolute and relative 

schemes adopt speech-section estimation from part of the pro-

posed algorithm in Sec. 3.2. The absolute scheme identified 

multiple speakers with a speech threshold for each speech sec-

tion in a similar way to 2) all-speakers judgment in Sec. 3.2. The 

scheme calculated the threshold ηS in each speech section S for 

each user and identified each user’s speech. The relative scheme 

identified multiple speakers with the averaged and base-adjusted 

sound pressure and thresholding in the same way as 3) speaker 

identification in Sec. 3.2. The optimal threshold of speech detec-

tion for both algorithms depended on each evaluation setting. 

The Rhythm scheme was based on the study of [21] to identify a 

speaker with IoT badges named Rhythm Badge. We extended 

the study of [21] to identify multiple speakers. The original 

scheme in Rhythm applied the VAD algorithm [36] and the 

thresholding algorithm to single-speaker identification for hu-

man organization management. The VAD algorithm used sliding 

windows for the acquired power of sound pressure to reduce 

Table 2　F1-scores under the different number of users.
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noise. The thresholding algorithm identified a user whose detect-

ed speech section was the longest as a speaker in each speech 

section. We extended the thresholding algorithm to simultane-

ously detect multiple speakers by judging speech for each user. 

We set the window size and the slide width to 2 s and 0.01 s for 

the sliding window in the VAD algorithm based on the study 

in [51]. The optimal value of the speech detection threshold for 

the thresholding algorithm depended on the evaluation settings.

4.1　 The Number of Users

We show the speaker identification accuracy considering dif-

ferent numbers of users with a script of long speech utterances. 

The number of users varied from two to five. We set the speech 

threshold ηs of Algorithm 1 in the absolute, relative, and pro-

posed algorithm to 75 dB for the speech section estimation refer-

ring to the study in [51]. We also set the speech threshold in the 

Rhythm scheme to 84 dB for the speech estimation referring to 

the study in [51]. The threshold was appropriately met irrespec-

tive of the number of users.

Tables 2 and 3 show the F1-scores of each scheme and the 

corresponding confusion matrices for two through five users. 

Each symbol on Table 3 shows that there was a speech (T) or not 

(F) and the proposed algorithm estimated speech (P) or non-

speech (N). Compared with the absolute and relative schemes, 

the proposed scheme absorbed the advantages of each compara-

tive scheme. The proposed algorithm precisely detected speakers 

in all-speakers cases with a combination of the two comparative 

schemes. As for the detection of the middle number of speech, 

the proposed scheme achieved high F1-scores taking advantage 

of the relative scheme. The proposed scheme also detected a sin-

gle speaker with the advantage of the two comparative schemes 

in most cases. Table 3 indicated that two F1-scores of the pro-

posed scheme were slightly lower than those of the two compar-

ative schemes in the cases of 1 and 4 speakers out of 5 users 

since the threshold mistakenly regarded a non-speaker as a 

speaker (False Positive). Compared with the Rhythm scheme, 

the proposed scheme precisely detected the middle number of 

speakers such as 2 speakers out of 3 users, 2 and 3 speakers out 

of 4 users, 2, 3, and 4 speakers out of 4 users, and 2, 3, 4, and 5 

speakers out of 5 users. Table 3 indicated that our proposed 

scheme accurately avoided falsely regarding non-speakers as 

speakers (False Positive) in most cases.

4.2　 Environmental Noise

We show the influence of environmental noise on speaker 

identification accuracy. Three users participated in the experi-

ments. We prepared a source to generate noise in our environ-

ment. The ceiling of the room furnished the noise source, 2 m, 

away from the table. The noise source generated five types of 

ambient noise recorded in trains, offices, streets, cars, and rain. 

Other settings were the same as the experiments in Sec.4.1. We 

set each noise as 75 dB in the train, 70 dB in the office and 

street, and 60 dB for cars and rain on average. We set the speech 

thresholds ηs of Algorithm 1 in the absolute, relative, and pro-

posed algorithm to 84 dB, 85 dB, 84 dB, 83 dB, and 80 dB for 

train, office, street, car, and rain noises for speech section esti-

mation referring to the study in [51]. We also set the speech 

threshold in the Rhythm scheme to 89 dB, 86 dB, 89 dB, 84 dB, 

and 85 dB for train, office, street, car, and rain noises for the 

speech estimation referring to the study in [51].

Table 3　Confusion matrices under the different number of users.
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Tables 4 and 5 show the F1-scores of each scheme and the 

corresponding confusion matrices under different environmental 

noises. Each symbol on Table 5 shows that there was a speech 

(T) or not (F) and the proposed algorithm estimated speech (P) 

or non-speech (N). Compared with the absolute and relative 

schemes, the proposed scheme precisely detected speakers with-

out some cases absorbing advantages of the two comparative 

schemes. Table 3 indicated that F1-scores of the proposed 

scheme were slightly lower than those of the two comparative 

schemes in the cases of 1 and 2 speakers out of 3 users in the 

train, 1 and 2 speakers out of 3 users in the office, 1 speaker out 

of 3 users on the street, and 3 speakers out of 3 users in the car 

since the threshold mistakenly regarded a non-speaker as a 

speaker (False Positive). Compared with the Rhythm scheme, 

the proposed scheme precisely detected speakers under specific 

noise such as street. However, Table 4 indicated that the Rhythm 

scheme achieved precise speaker identification under the noise 

of rain. In terms of the frequency component in the noise, the 

noise of street included much frequency component between 

10 Hz and 20 Hz, less than the Nyquist frequency of the sound 

pressure sensor in SRP Badge. We found that the proposed 

scheme had tolerance for low-frequency noise. On the other 

hand, the noise of rain entirely included noise in the frequency 

between 0 Hz and 50 Hz. We found that the proposed scheme 

had limitations of the above uniform noise.

4.3　 Short Utterances

We show the influence of short utterances and speeches of 

less than one second [4], using the script of short utterances in 

the speech script. The experiments were conducted on three us-

ers. Other settings were the same as the experiments in Sec. 4.1. 

We set the speech threshold ηs of Algorithm 1 in the absolute, 

Table 6　F1-scores of short utterances.Table 4　F1-scores under the different environmental noise conditions.

Table 5　Confusion matrices under the different environmental noise conditions.

Electronic Preprint for Journal of Information Processing　Vol.31

© 2023 Information Processing Society of Japan



relative, and proposed algorithm to 73 dB for speech section es-

timation referring to the study in [51]. We also set the speech 

threshold in the Rhythm scheme to 78 dB for the speech estima-

tion referring to the study in [51].

Tables 6 and 7 show the F1-scores of each scheme and the 

corresponding confusion matrices of short utterances. Each sym-

bol on Table 7 shows that there was a speech (T) or not (F) and 

the proposed algorithm estimated speech (P) or non-speech (N). 

Compared with the absolute and relative schemes, the proposed 

scheme absorbed the advantages of each comparative scheme. 

The proposed scheme precisely detected three speakers with the 

advantage of the absolute scheme. As for the single-speaker de-

tection, the proposed algorithm achieved high F1-scores taking 

advantage of the relative scheme. Table 7 indicated that the F1-

score of the proposed scheme was slightly lower than the relative 

scheme in the case of 2 speakers out of 3 users since the thresh-

old mistakenly regarded a non-speaker as a speaker (False Posi-

tive). Compared with the Rhythm scheme, the proposed scheme 

precisely detected speakers in the cases of 1 and 2 speakers out 

of 3 users. Table 7 indicated that the F1-score of the proposed 

scheme was slightly lower than that of the Rhythm scheme in 

the all-speakers case since the threshold mistakenly regarded a 

speaker as a non-speaker (True Negative).

5.　 Conclusion

In this study, we proposed a novel algorithm for multi-speaker 

identification with business-card-type sensors to extract collabo-

ration characteristics in multi-person activities. The proposed al-

gorithm simultaneously identifies multiple speakers using low-

cost sensors through three steps: speech section estimation, 

all-speakers’ judgment, and speaker identification. The steps 

eliminate ambient noise from non-speakers sensors to simultane-

ously identify multiple speakers with high accuracy. The evalua-

tions showed that the algorithm accurately identified multiple 

speakers in a multi-person activity under different numbers of 

users, environmental noises, and users’ short utterances.

For our future works, we plan to validate the specification of 

our proposed scheme, further justify the evaluation, and improve 

the accuracy of our proposed scheme under specific environ-

ments. We attempt to validate the influence of directivity in SRP 

Badge and the effect of reverberation in our proposed scheme. 

To further justify the evaluation, we plan to add experimental 

samples with various subjects and test significant differences be-

tween each scheme. We also attempt to precisely tune parame-

ters in our proposed algorithm or acquire audio data from SRP 

Badge keeping low costs of hardware and processing to improve 

the accuracy of multi-speaker identification under specific envi-

ronments.
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