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Static Detection of Garbage Cells
and an Experimental Lisp System

Katsuro Inoue Jun Kawase and  Koji Torii

Dept. Information & Computer Sciences, Osaka University, Toyonaka, Osaka 560, Japan

[Abstract]
We have proposed a method to detect the generation of garbage cells, by analyzing a
source text of functional programming languages[9]. The garbage cells whose
generation is expected are reclaimed immediately without any overhead at the
execution time. We call this method direct reclamation. To investigate the effects of
the direct reclamation, an experimental LISP interpreter has been implemented, and
several sample programs are executed. We knew that for most programs, many of the
garbage cells are detected and reclaimed by the direct reclamation. Programming

techniques to improve the reclamability are also studied.
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1. Introduction

Functional programming languages have good
properties such as simply defined semantics and
mathematical elegance, and the implementation of
functional language has been studies. To execute those
programs efficiently as much as possible, we have
studied various optimization problems [10,15]. As a
problem of those optimizations, we have proposed a
method to reduce run-time overhead for detecting and
reclaiming garbage cells [9]. We call this method Direct
Reclamation. A garbage cell is a certain amount of
memory space in a so-called heap area, which is
inaccessible, after a certain point of the program
execution from the run-time environment.

In this paper, we show an experimentally
developed LISP interpreter which implements the direct
reclamation. This system has a special built-in function,
named opt, which analyses the source LISP program
and expects some generation of garbage cells. opt also
embeds, to the source program, functions named rclml
and Aold which reclaim actually generated garbage cells
at the execution time. Using this system, several sample
programs are executed, and various data relating to cells
in the heap area and the garbage collection processes are
collected. These execution results and the data will be
shown in Chapter 4. We will also discuss some
techniques to improve the source program so that more
expressions in the source program satisfies the
conditions for the direct reclamation and more garbage
cells are reclaimed by the system.

The system has been developed using ordinary
implementation techniques of LISP [1], and we did not
special attention of the execution speed of the system,
since this is an experimentally developed system for
investigating the effectiveness of the direct reclamation.
The data structure assumed here is the binary list, and
the primitive functions car, cdr, cons, and so on are
implemented as shown in [1].

The direct reclamation method can be applied to
purely functional programs using list as its primitive data
structure. In this system, user-defined functions which
are defined in purely functional styles are only
investigated. Function definitions which might cause
side effects are not considered as candidates of the direct
reclamation.

The direct reclamation method also assumes that
the data types of each argument and function value are
known explicitly. Here, we employ a simple type-

inference method to get those types of defined functions
in the LISP programs.

This system only reclaims some of backbone
cells which will become garbage, although the proposed
method is more general and can be applied to other cells.
Backbone cells of a binary list are cells reachable from
the root cell only using zero or more pointers stored in
cdr (right) parts of each cell. (Note that the root cell is a
backbone cell.) We suppose that reclaiming only the
backbone cells would be practically sufficient in many
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cases, since all of garbage cells generated at execution
time are reclaimed for many sample programs as shown
in Chapter 4.

2. Overview of Direct Reclamation

Consider expression ...(G (Fx ...) .. x..)
... where x is a list-type variable and F is also a list-type
function. The cells which appear in x (cells reachable
from the root cell of a binary list representing x as
components of the first arguments of ) and which do
not appear in the function value of F are called non-
inherited cells for the first argument of F. In this case,
these cells are not always garbage cells after the value of
(F x ...) is computed, since these cells in x may be used
as an argument of G. The cells which are in the value of
(F x ...), but not in any argument of F including x are
called created cells for F.

Here, we naturally assume that created cells for
F are not shared with other subexpressions, that is, there
is no mechanism to share computed values of
subexpressions except for subexpressions consisting
only. variables which are passed as parameters. With this
assumption, cells which are created ones for F and
which are non-inherited ones for the first argument of G
become garbage cells after the value of G is computed.
Since non-inherited cells and created cells for a function
can dynamically depend on the values of arguments
(input data), it is impossible generally to determine all of
them without execution. Thus, we only discuss statically
detectable cells from the program text.

A backbone cell can sometimes reachable from
the root using pointers in car parts as seen in Figure 1.
These cells are called overlapping cells. It is known that
in actual LISP programs, there are a few percentage of
overlapping cells [3,4], and sufficient conditions for
created cells to be non-overlapping has been studied [9].
Here, we assume that backbone cells are non-
overlapping so that the following discussion will be

simplified very much. The interpreter we have
constructed always checks those sufficient conditions
shown in [9], and performs the optimization if those
conditions hold. We only discuss backbone cells in this
paper; however, our method can be easily extended to
other cells as described in [9].
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Figure 1. Example of Overlapping Cells.

2.1 Non-inherited and Created Backbone Cells
In this section, we show a method to determine
whether all backbone cells of a list-type argument of a
function are non-inherited cells for any input date (in
such case, we call the argument a non-inherited
argument), and whether all backbone cells of a list-type
value of a function are created cells for any input date



(also, we call the argument a created argument).
Consider a quicksort program shown in Figure 2. In this
case, the first argument of defined function g¢s,
represented with variable x, is non-inherited argument
by the reason discussed later. The function Jow has only
a list-type argument, represented by x, and it is a created
argument as discussed later. Thus, for a subexpression
...gs(low(... in the definition of gs, backbone cells in
the function value of low is created by low and not
inherited by g¢s. Hence, those backbone cells can be
reclaimed just after the value of gs is computed.

(de gs (x)
(cond [(null x) nil]
[t (append(gs(low (cdr x)(car Xx)))
(cons (car x)(gs(high (cdr x)(car x]]
(de high (x 1)
(cond {(null'x) nil]
[(not (lessp (car x) i))(cons (car x)(high (cdr x) i]
[t ¢high (cdr x) i]]
(de low (x i)
(cond [(null x) ni}]
[(lessp (car x) i)(cons (car x)(low (cdr x) i]
[t (low (cdr x) i]]
(de append (x y)
(cond [(atomx)y]
[t (cons (car x)(append (cdr x) y1]

Figure 2. Quicksort Program

2.2 Getting Equations for Inheritedness

For each list-type argument of defined functions,
we employ a boolean variable which eventually indicates
if all backbone cells of the argument are non-inherited or
not. For the first argument of gs, boolean variable gsy is
made where subscript 1 denotes the first argument. In
the same manner, highy, lowy, append; and append; are
prepared. Also we introduce boolean constants
car1=True and cdri=False.

Now, we obtain sequences of functions which
are applied to a list-type variable (argument) and which
generate list-type result values. For the first argument of
gs, which is represented with variable x, three sequences
(APPENS (gs (low (cdr x) ...)) ... ), (append ... (cons
(car x) ...)), and (append ... (cons ... (gs (high (cdr x)
... )))) are applied to x. null is a function applied to x,
but it generates no list-type values. car's appearing at the
second argument of low and high give integer values
since those second arguments are known to be non-list
type. These function sequences generating no list values
are not necessary to be considered here.

Each function sequence is scanned from the right
to the left starting at the variable, and each function
symbol is replaced by a boolean variable with a subscript
indicating the index of argument or a boolean constant
until either of the following conditions are satisfied.

(1) cons is first encountered.

(2) The next function to the left of a defined function
which could eventually apply cons directly or indirectly
to the variable[9].

The obtained boolean variables and constants are
connected together with or operator | .

For example, for (APPENS (gs (low (cdr x) ...
)) ... ) we get a boolean expression cdry | low, since
low would apply cons in it to (cdr x) and satisfies
condition (2). In this function sequence, primitive
function cdr is first applied to x and the value of (cdr x)
still contains the backbone cells of x. Those backbone
cells are also the backbone cells of the value of (cdr x).
If the first argument of low is non-inherited, then this
function sequence preserves no backbone cells of x as
the result. In the case that low is not non-inherited, the
backbone cells of x may be or may not be preserved,
depending on the characteristic of append and gs. To
analyze this, we have to know that the non-inheritedness
of all cells in the binary list for append and gs, since the
backbone cells of x might become cells other than
backbones in the result of low. Here, we simply assume
that all the functions eventually applied to the result of
low could preserve any cell of the result, and the fact
whether or not the final result of this sequence involves
the backbone cells of x might be dominated by the fact
whether or not the first argument of low is non-
inherited. )

We analyze in the same way other two function
sequences. If any of these three sequences preserves the
backbone cells of x then the first argument of gs is not
non-inherited. We obtain the following boolean
equation.

gs1 = (cdry | low1) & (car1) & (cdry | highy)
where cdr| =False
cary =True

Here, we delete all applications of functions outside the
application of cons including cons itself. Primitive
function car is interpreted as True since it never
preserves any backbone cells of its argument. For each
list-type argument of the defined functions, a set of
equations is constructed. We have the following set of
equations. (Here, irivial simplification of the equations
has been already made.)

gsy = low; & highy
highy = highy

low1= low

append = appendy
appends = € & appendy

Here, € shows that the value of the argument can become
directly the function value without any modification, and
€ is interpreted as False, since the backbone cells can be
directly become the function value.

The maximum solution of these equations with
respect to False<True shows non-inheritedness of each
argument of defined functions. The solution is gsi=
True, high1= True, lowy= True, appendi= True,
appendy= False.

2.3 Getting Equations for Createdness

To determine if the first argument of low is

created, we have an equation for three function



sequences, (cons (car Xx) ... ), (cons ... (high (cdr x) ...
)), and (high (cdr x) ... ).

low1 = consy & (consy | lowy) & (low1)
where cons) =True
consy = False

Each sequence is scanned from the left to the right, and
each function symbol is replaced by a boolean variable
with a subscript indicating the index of argument until
one of the following conditions are satisfied.

(1) car, cdr, or x itself are first encountered.

(2) The next function to the right of a defined function
which could eventually apply car or cdr to the rest of the
function sequence.

(3) The function which satisfies the conditions of
possible creation of overlapping cells[9].

For each list-type argument of defined function,
we set up the equation. For the quicksort program, we
have the following equations. (Trivial simplification of
the equations are made.)

qs1 = append) & (appendy | gs1)
highy = highy

lowy = lowy

append) = append

appendy = € & appendy

Here, € is interpreted as False. The maximum solution
of these equations, gsi= True, highi1= True, low1=
True, appendi= True, appendy= False, indicates the
createdness of each argument of the defined functions.
In order that the backbone cells of the function value of a
defined function are to be created ones, all of the list-
type arguments of the defined functions should be
created. In this case, gs, high, and low have only one
list-type argument and they are created. Thus, the
backbone cells of the function values of these functions
are always created. append has two list-type arguments
and one of them, appendy is not created. Therefore, the
backbone cells of the function value may not be created
ones.

3. Experimental System

3.1 Overall Structure

We have constructed an LISP interpreter system
written in C running on a UNIX machine. The
implementation method used for this system is an
ordinary one [1]. Primitive functions implemented in this
system are limited to necessary ones for executing
sample programs and collecting data related to the
garbage collections.

The system has special primitive functions,
rclm0, rciml, ..., rclm31, hold, and opt, which relate to
the reclamation of garbage cells, and will be described in
the next section. It has also an ordinary mark and sweep
garbage collection process (named OGC) which marks
used cells and returns unmarked cells to the available list
when there are no cells in the available list. For each

execution of the top-level function, the system prints out
the followings.

(1) The number of extracted cells from the available list
(consumed cells).

(2) The number of activated OGC processes.

(3) The number of cells returned to the available list by
OGC processes.

(4) The total time required for OGC processes.

(5) The total execution time including OGC processes.
3.2 Primitive Functions for Reclamation

There is one special stack which holds pointers
to the root cells of binary lists. Primitive function hold
takes one argument and pushes the argument to this
stack. The argument is expected to be the list type, and
the pointer to the binary list representing the list is
pushed. The value of hold function is its argument.
Primitive function rcim1 pops the top element of the
stack, and if it is a pointer to the root of a binary list, the
backbone cells of the binary list are returned to the
available list. rcim1 takes one argument and its value is
the same as its argument,

Consider an expression ...(F (G
where F and G are list-type functions, and F has one
list-type argument and it is non-inherited. Also, each list-
type argument of G is created. Hence, the backbone cells
of the function value of G can be reclaimed after the
value of F is computed. To reclaim these backbone cells,
we insert a pair of rclml and hold as ...(rclm1 (F (hold
G

rcim2 reclaims all the cells reachable from the
root through pointers stored in car parts of the cells, and
rclm3 reclaims backbone cells and cells reclaimed by
rclm?2. In the same manner, rclm4 to rcim31 reclaim
various cells specified. rcim0 reclaims no cells but
simply pops the top of the stack.,

We can insert rclm - hold pairs into the source
program by hand, or for rciml, rciml - hold pairs are
inserted to the place where the conditions discussed
above are satisfied, by executing a function opr as
described in the next section.

3.3 Function to Insert rclml and hold

Primitive function opt takes one argument which
is a defined function name. Here, we call this defined
function the main function. opt performs the following.
(1) Defined functions which are called directly or
indirectly from the main function are listed.

(2) For each definition of defined functions listed above,
existence of serq function or existence of the defined
functions which eventually execute setq are
investigated. In this system, setq is only the primitive
function which causes side effects. The defined function
involving those functions are considered to cause side
effects. The following steps are not performed for those
functions.

(3) For each argument of defined functions listed, the
type of argument is inferred. Here, we employed a
simple method to infer types. Consider a definition of F
such that (de F (x1 ..) ( ....(g x1..)..)). If the
first argument of g is not the list type, it is determined
that the first argument of F is not the list type. All



arguments of plus, times, greaterp, and so on are

considered to be non-list arguments. The non-list
arguments of defined functions already inferred are also
non-list type. If the definition does not have such g, the
first argument of F is considered to be the list type. If a
function is defined very unusually in such a way that the
data type of the argument is sometimes the list type and
sometimes the non-list type, the result of the inference
might be wrong and the result of the wrong inference
could cause some trouble in the following steps. If we
want to overcome this problem, we should employ other
inference methods [12]. However, since this system is a
prototype system for investigating applicability of the
direct reclamation method, we used a simple way.
(4) For each list-type argument of defined functions,
sequences of functions (excluding cond) applied to the
argument are made, which are necessary for constructing
boolean equations described in Section 2.2 and 2.3.
(5) For each defined function F, possible application of
car/cdr and cons to the arguments is investigated. A flag
flag for carfcdr and a flag flags for cons are prepared
for F, and if the definition of F involves car or cdr, or
involves a defined function whose flag is true, flagy for
F is set to be True. Otherwise, it is set to be False. flagy
is set to be True if the definition of F involves a cons or
a defined function whose flags is True, otherwise it is
set to be False.
(6) Two sets of equations for the non-inherited
arguments and the created arguments are constructed
from the information obtained at steps (4) and (5) as
described in Section 2.2 and 2.3.
(7) The solutions of the sets of equations are computed
using O(n) algorithm described in [9].
(8) In each definition, a subexpression such as ... (F ...
(G ...)...) ..1is searched for, where every argument
of G is either created or the non-list type, and (G
appears as the ith argument of F and the ith argument of
F is non-inherited. If it is found, the subexpression is
modified to ... (relml (F ... (hold (G .....)) ... )) wue©

4. Execution of Sample Programs

We have made following sample programs and
executed them on the constructed interpreter.
(1) Quicksort (gs). (4 defined functions and 15 lines
long.) This program is shown in Figure 2. The inputis a
random sequence of 1000 integers.
(2) Division by 2 using lists of n nil's (div2). (4 defined
functions and 17 lines long.) First a list of n nil's is
created and next a list of n/2 nil's is repeatedly
constructed 1200 times. This program is shown in [7].
We gave 200 as n.
(3) Full reverse function (fullr). (3 defined functions and
11 lines long.) This program creates an symmetric
binary list of a given list [13].
(4) Prime number generator (prime). (8 defined
functions and 28 lines long.) The algorithm used here is
Eratosthenes' sieve. At first, an ascending integer
sequence is generated as candidates of primes. For each
integer in the sequence, a sequence of multiples is

generated, and if a multiple appear in the candidate
sequence, it is removed from the candidate sequence.
We compute a prime number sequence less than 200.

(5) Core LISP interpreter presented in [14] (inter). (7
defined functions and 39 lines long.) On this interpreter,
TARAI function [7, 16] using lists is executed with
input lists of length 7, 5, and 3.

(6) GO board program (GO). (43 defined functions and
166 lines long.) This program takes a sequence of
coordinates on the GO board as an input. These
coordinates represent the locations where two players of
GO game intend to place stones in turn. For each
placement, a list simulating the GO board is updated
according to the rule very strictly, since this program is
obtained by transforming an algebraic specification of a
GO rule [11]. When the game is over, the winner of the
game is determined and returned as the result of this
program.

For each program, function opt is applied to its
main function. Since the type inference method used
here is insufficient to detect all of non-list arguments,
rclml-hold pairs are sometimes inserted to such a
subexpression as ...(F (G ...)).. where G always
gives non-list values. However, the inserted
subexpression is executed correctly, since for non-list
value on the stack top, rciml does nothing except for
simply popping up the stack. The execution speed may
slow down slightly.

rclm1-hold pairs are inserted automatically by
performing opt to all subexpressions which are detected
by our hand analysis of the programs. We show in the
following the execution results of those sample
programs. The data sizes and maximum cell capacities in
the heap area are determined so that the total execution
times are appropriately long and that enough garbage
cells are generated. We counted the total number of the
garbage cells generated, the total number of the garbage
cells reclaimed by the inserted rclml-hold pairs, the
number of the OGC processes, the total time consumed
for the OGC processes, and the total execution time.

(1) gs: Table 1 and 2 show the execution results under
two different heap sizes. In Table 1, the heap area has
5000 cells and in the second case, 10000 cells. In Table
2, by applying opt to main function gs, three rclm1-hold
pairs are inserted to the definition of ¢s as shown in
Figure 3. Other functions are the same as Figure 1. All
the garbage cells are reclaimed without using OGC
processes. In the case of 5000 cells in the heap, the total
times reduced by the direct reclamation is 13.6 seconds,
and it is the same as the time consumed for OGC
processes of the program execution without the direct

-reclamation (13.6 seconds). In the case of 10000 cells,

(5>

however, the effect of the direct reclamation cannot be
séen since the OGC processes are not time-consuming
even without direct reclamation. The execution with the
direct reclamation takes a little longer total time because
extra rclml-hold pairs are executed repeatedly.



Table 1. Execution of Quicksort (gs) under 5000 Cells in

Table 5. Execution of Full Reverse (fullr) under 5000 Cells

the Heap.  ( Data : 1000 random integers) in the Heap. (Data: (nil nil ... nil) 500 nil's

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
N| 5000 17144 0 -] 15| 13.6] 56.1 - N| 5000f }125250 0 -] 31| 57.2]1196.9 -
Y| 5000 17144| 17144]100%| O 0.0 42.5] 0.1 Y| 5000] [125250(125250{100%]| O 0.0{139.6] 0.1
1: The Direct Reclamation (N: No, Y: Yes). Table 8. Execution of Full Reverse (fullr) under 5000 Cells
2: The Total Cells in the Heap Area. in the Heap. (Data: ((...(nil) nil) .... )nil) 500 nil's)
3: The mumber of the Total Garbage Cells Generated. 1 2 3 4 5 6 7 8 9
4: The Number of the Grabage Cells Reclaimed by RCLM{. NI 5000 499 0 -] ol 0.0 29§ -
5: The Percentage of the Garbage Cells Reclaimed by RCLM1. Y| 5000 499 499{100%| 0] 0.0l 3.1]o0.1
6: The Number of Activated OGC Processes.
7: The Total Time Required for OGC processes. Table 7. Execution of Prime Number Generator (prime) under
8: The Total Execution Time. 1000 Cells in the Heap (Data: The primes less than 200)
9: The Time Required for OPT. 1 2 3 4 5 6 7 8 9

Nl 1000 777 0 - 1 0.1] 29.1 -
Table 2. Execution of Quicksort (gs) under 10000 Cells in Yl 1000 777 777{100%| 0] 0.0] 28.9{0.3
the Heap.  ( Data : 1000 random integers) )
1 2 3 4 5 6 7 8 9 Table 8. Execution of Core LISP Interpreter (interp) under
Nf 10000 17144 0 - 2 1.01 43.1 - 1000 Cells in the Heap. (Data: tarai 7, 5, 3)
Y| 10000 17144) 17144{100%| © 0.0] 44.0/ 0.1 1 2 3 4 5 6 7 8 9

N| 1000 3128 0 - [ 1.2| 18.8 -
Table 3. Execution of Division_by_2 (div2) under 500 Celis Y| 1000 3128 106] 3%] 6] 1.4] 19.1]0.3

in the Heap.  (Data: n=200)

1] 2 3 4 5 6 7 8 9 Table 9. Execution of Core LISP Interpreter (interp) with hand
Nl 500] 1120208 0 -599[113.8|256.5 - embedded RCLM24 under 1000 Cells in the Heap.
vl 500 |120206]120200] 99%| o] 0.0[133.9] 0.1 (Data: tarai 7, 5, 3)

Table 4. Execution of Division_by_2 (div2) under 5000 Cells

in the Heap. (Data: n=200)
1 2 3 4 5 [ 7 8 9
N| 5000/ [120206 0 -1 25 8.0]141.0 -
Y| 5000f |120206]/120200{ 99%| O 0.0{133.4] 0.1
(de gs (x)
(cond[(null x) nil]
[t (rcim1(append(hold

(rclml(gs(hold(low (cdr x)(car x))))))
(cons (car x)(relm1(gs(hold(high (cdr x)(car x]]

Figure 3. Quicksort with Rclm1 and Hold.

(2) div2: Table 3 shows the execution results under 500
cells, and Table 4, 5000 cells in the heap. Four rcim1-
hold pairs are inserted by opt, and most garbage cells are
reclaimed by them. In the case of 500 cells without the
direct reclamation, the OGC processes are activated
seriously. By extending the the cell capacity in the heap,

the number of the activated OGC processes are reduced,
and the effect of the direct reclamation on the total
execution time is reduced.

(3) fullr: In Table 5 and 6, we show the execution results
under 5000 cells in the heap space. One rclml-hold pair
is inserted by opt as seen in Figure 4. We used two
different inputs. datal is a linear list of 500 nil's as (nil

nil nil nil), and data2 is a nested list of 500 nil's

as ((( (nil) nil) nil) ) nil). All of the garbage
cells can be reclaimed in both cases. It might be
considered that not all garbage cells were reclaimed for
data2 since rclml collects only the backbone cells;

however, the reclamation is performed at each element of
the input list recursively and all of the garbage cells are’
reclaimed.

7 8

—_

2 3 4 5 6

Y| 1000 3128] 1811] 57%| 2| 0.5] 17.5

<6

(de fullr (1)
(do 500 (fr 1]
(de fr ()
(cond [(nulll) nil]
[t (relm1 (append (hold (fr (cdr 1))
(cons (fr (car 1)) nil]]
(de append (1 m)
(cond [(null 1) m]
[t (cons (car D(append (cdr 1) m]]

Figrure 4. Full Reverse Function with Rclm1 and Hold.

(4) prime: Table 7 shows an execution result under 1000
cells in the heap. With the direct reclamation, all garbage
cells are reclaimed. However, even without the direct
reclamation, only one OGC process is activated, and
there was no big difference of the total execution times
between two cases.

(5) interp: In Table 8, we show execution results under
1000 cells in the heap. By the direct reclamation, 3% of
generated garbage cells are reclaimed. We further
analyzed the program by hand as described in [9] and
knew that a pair of rc/m24-hold can be inserted to a
subexpression for label in the definition of applyl.
rcim24 reclaims the root cell and the cell pointed by the
left pointer in the root cell. The execution result of this
program is shown in Table 9. The percentage of the
reclaimable garbage cells increased to 57%. This is
because without rclm24, two cells are created for two
cons'es each time label is executed, which is seriously
activated in the TARAI program, and these two cells
become garbage cells. However, rclm24 reclaims those
cells, and reduces the activation of OGC processes.

(6) GO: Under 3000 cells in the heap, we executed a GO



Table 10. Execution of GO Board Program (Go) under 3000
Cells in the Heap under 3000 Cells in the Heap.
(Data; 24 placements of stones)

1 2 3 4 5 6 7 8 9
N 3000| | 23144 0 -1 19] 2.8{265.2] -
vl 3000[| 23144] 5757] 24%] 17| 2.6[265.2]1.6

Table 11. Execution of GO Board Program (Go) under 3000
Cells in the Heap with a Copy Function under 3000 Cells in
the Heap. (Data: 24 placements of stones) .

1 2 3 4 5 6 7 8 9
N| 3000| | 24764 0 -} 22| 3.3]268.1 -
vl 3000f | 24764] 24764}100%] 0] 0.0{263.2]1.7

game having 24 placements of stones on a 5_by.5

board. The game starts with a placement of a black
stone, and finally the black winds by one stone
advantage. As shown in Table 10, 24% of garbage cells
are reclaimed by the direct reclamation. We analyzed the
program, and found that if the first argument of defined
function setdiff, which computes (the set of elements in
the first argument) - (the set of elements in the second
argument), would be non-inherited and created, four
more rclml-hold pairs are inserted. To do so, we
changed the definitions of serdiff as shown in Figure 5.
(In the original definition of setdiff, instead of (copy cI),
simply ¢! was used.) We introduced a copy function
copy, and duplicated the first argument of setdiff. By
this modification, four more rclm1-hold pairs can be
inserted automatically, and all the garbage cells can be
reclaimed as seen in Table 11. Function copy gives little
overhead in this case, and by the effect of the direct
reclamation the total execution time of the program with
copy is shorter than that without copy. The time required
for opt is 1.7 seconds and we consider that it is
acceptablely small.

(de setdiff (c1 c2) (cond

(null ¢2) (copy cl)

(t (setdiff (remv ¢l (car c2)) (cdr c2)))))
(de copy (1) (cond

((null 1) nil)

( (cons (car 1) (copy (cdr D)))))
(de remv (1 €) (cond

((null 1) nil)

((equal (car 1) e) (remv (cdr 1) e))

(t (cons (car 1) (remv (cdrl) e)))))

Figure 5. A Definition of Setdiff with Copy.

5. Programming Techniques to Get Non-
inherited Arguments and Created Arguments

5.1 Extracting Variables Out of Arguments
Consider the following functions.

(de g 01 (oop i nil))
de  loop (1 x2) (cond
((endx1 x2) x2)

§t (loop (h x1) (f x1 X2)))

Function loop is defined in tail recursive style. Function
g calls loop with y1 and nil as initial value of the loop. In
loop, the second argument is modified repeatedly and
finally becomes the value of Joop when the termination
condition (end x1 x2) is satisfied.

Suppose boolean equations of created arguments
as follows.

g1.= loopy
loopy = € & loopy
loopz = loopy & loopy

The maximum solution is that g1 = loop1 = loops =
false, that is, all arguments are not created. However, if
we can modify the loop so that xj is not passed into f, g1
could be true. For example, if the definition of loop can
be modified as follows, g1 will be created since the
introduced functions fi, f2, ..., fn have no x; as their

arguments.

(de  loop (x1 x2) (cond
(end x1 x2) x2) .
((casel x1 x2) (loop (h x1) (f1 x2)))
((case2 x1 x2) (loop. (R x1) (2 x2)))
) §t toop (h x1) (Fr 1))

This technique is important, since purely
functional programs tend to use the tail recursive forms
as loops, and created lists by the loops often become
garbage cells after used for the next functions. Also, this
technique can be applied to more general definition such
as,

@ g Oy Goop y1  niD)

(de  loop (x1 x2) (cond
((end x1 x2) x2) ,

) ¢ v (h x1) (f x1 x2)))
)

where there is no explicit tail recursive loop. In the same
manner as described above, we may be able to extract x1
out of the second argument of v which is not created.
5.2 Introducing Auxiliary Functions

Consider an expression,
.. (g (f exp const)) ..
where exp is some expression, const is a constant list
having no variables (no formal parameters) in it. Assume
that the argument of g is non-inherited and the first
argument of f is created but the second argument is not.
The optimizing function opt does not insert rclm1-hold
pair to this expression since not all the arguments of f is
created. .

If we introduce an auxiliary function f1 and
modify the expression as follow, rclml-hold can be
inserted.

g (1 exp)) ..

(de f1 (x1) (f x1 const)
This is because f1 has only one argument, and it
becomes created one.
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This technique might be unnecessary if opt
checks not only the createdness of arguments but the
existence of variables in the expressions.

5.3 Introducing Copy Function

The copy function defined as in Figure 5 simply
duplicates given list by construction new backbone cells.
It has one argument that is non-inherited and created.
Introducing copy functions sometimes helps to improve
reclaimability of garbage cells and the total execution
speed as described in Section 4 (6). However, using
copy functions definitely increases the number of total
consumed cells, and it could slow down total execution
speed by the effects of additionally inserted rcim1-hold
pairs in some cases. Thus, we have to investigate the
program carefully and know the behavior of program
execution before using the copy functions.

6. Conclusions

We have discussed about our experimental LISP
system which has facilities of reclaiming garbage
backbone cells without extra overhead at the execution
time. First, we constructed a core part of the LISP
interpreter where no opt function had implemented yet
but rclm and hold functions and facility to collect
statistic data of cells had implemented. It took about 3
months for a undergraduate student to construct this core
part. This LISP interpreter has over 50 built-in
functions and 3200 lines long in C. Next, the program
for opt, which is 1200 lines long in C, was added to the
core interpreter. It took one and a half months for one of
authors to design and implement opz.

In this system, only the backbone cells are
reclaimed; however, for some program, the
reclaimability will be higher if other cells are also
reclaimed as mentioned in Section 4 (5). In the same
method as described in Chapter 2, we can set equations
for specific cells and determine if they are reclaimable.
The time spent for solving a set of equations is small as
shown in Chapter 4. Therefore, if the system makes
several sets of equations and solves them in order to
directly reclaim other cells as well as the backbone cells,
the total performance will be improved.

In this paper, we applied the direct reclamation
method to a LISP interpreter system. However, this
method can be applied to the compilers of functional
languages in the same way. No explicit optimization
functions such as rcim, hold, and opt are not necessary
for the input languages of the compilers, but those
facilities could be embedded to the compilers and the
generated codes.
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