V7 b 2 7IL%¥ 64-23
(1989 2 3)

BBV I7PDOFNy FTF RN~} v 2T o
FRAEREY)T SHE—T LEARE

¥JTMTE R B R A TR — 31T VR T AR
HEEA®

FoRo FZ2FRAN— PV RFLRILTBRREAY 7Y 2TOF N0 FLB2W2FS>5 %
YAFLE, BRRBIUF N 7 A>AAELORAOb L, MEOER £
AL, ADRUYHFIECBI>EIdEC, by 2F 20BEBCRAOEHRLEEL HICEL K
5L BELC. MRSAADBOTHS, YRFL TR, TOESAKhEGEE2HL-T
fis, HRCEALLOMERLTHRERBEOR L. RERL AV — 2 0 HEBHRF
EROMEEWMATE 5, KAWTH, Y27 20BMB L ONA L HAOEM L B
Bi2EHn T, FNovSxda =y 2aF 0Bz v Thx 3,

Debug Expert System for Switching Systems Software

Cecilia Yukari AKAO*, Keiichi IMAI**, Kensei TSUCHIDA*
* Softv;vare Engineering Development Laboratory #x First Switching Network Systems Division
2-11-5, Shibaura, Minato-ku, Tokyo, 108 JAPAN 1131, Hinode, Abiko, Chiba, 270-11 JAPAN
NEC Corporation

ABSTRACT

The Debug Expert System is a system that debugs and diagnoses switching
systems software. It was developed together with experts and users who debug
switching systems software, in the tentative of satisfying requirements of both
and, of building a system that comports in the same way as humans, i.e., to
approximate the system with the natural way of human thinking. For this, new
concepts such as initial information and unknown treatment are introduced in
this paper. There is also a correlation between decision trees and rules. This
paper describes the architecture of the Debug Expert System, including a
-description of its features and justifications and explanations of all concepts
introduced here.

—177—

1. Introduction

The objective of the Debug Ezpert System
(DBES) is to debug and diagnose errors and mal-
functions that occur on the testing phase of switch-
ing systems software.

In switching systems, almost all the software
available is extremely large and complicated.
Besides the telephone exchange systems, the com-
ing generation of switching systems have higher
expectations. They must be real time systems
because immediate response time is required. They
must be multi-process, allowing high concurrency
to solve numerous tasks quickly. Also, they must
offer continuity of services, as switching services do
not allow interruptions, even when some trouble
occurs. So, the structure of switching systems
became complex, and concomitantly, when building
a switching system, its testing phase became both
compléx and exhaustive. Therefore, the need for a
powerful system that gives support in the testing
phase of such systems arose. In response to this
the Debug Expert

expectation, System was

developed.

In the diagnosis and debugging domains,
almost all the Expert Systems (ES) available are
rule-based systems based on symptom-cause rules
([Shortliffe76]). However, as knowledge of switch-
ing systéins has many peculiarities and is very
complex, there is a necessity of introducing
features and tools to the ES, so that consultants

can deal with the knowledge of ES smoothly.

In the tentative to approximate the system
with the natural way of working of the user, DBES
introduces new concepts, such as unknown treat-
ment which deals with information which veracity
the consultant does not know or which meaning
the consultant does not understand, and auziliary
information, which gives complementary informa-
tion regarding the debugging environment.

Since knowledge of the system was extracted
from a decision tree, and because knowledge
represented as tree structures is more easily under-
stood by consultants not familiar with production
rules, features that transform rules into decision

trees and an editor of rules from a decision tree are

also implemented.

Section 2 explains the difficulties of the
knowledge domain. Section 3 describes the DBES.
The following sections describe the new concepts,
together with a detailed description of the system.

2. Knowledge Acquisition

Switching systems ‘covet a very wide domain
of knowledge. Experts are expected to know not
only about switching domains, but also about OS,
multi-processors, hardware, etc. And it is not rare
that, given some problem to different experts, each
expert interprets and solves this problem in a dif-
ferent way of other experts. This is understandable
since there are many possible alternatives that can
explain some bug. Sometimes one cannot say
exactly which solution will solve the problem and
sometimes two or more alternatives must be com-
bined to find a suitable solution.

To obtain the most complete and confident
knowledge data, it is obvious that knowledge
should not be extracted from only one expert.
Knowledge of the DBES was elaborated with the
coopération of three experts. Although many dis-
cussions have arisen around each theme that was
being analyzed during the construction of the
knowledge data (because each conclusion must
have the consensus of all the experts, and this does
not always happen), we believe that these discus-
sions were very important because they lead to the
confection of a knowledge data that has the con-
sensus of all the experts, and so, with more con-
sistency. But at the same time, there is always a
risk of building a knowledge data that, for some
bugs, does not offer the most efficient inference,
because perhaps some skill of one of the experts
was not accepted by the others.

Experts are not interested in debugging
switching systems in its coding level, i.e., in the
syntax and in the analysis of the structure of the
programs that compound the switching systems
software. They are interested in the switching sys-

tems functions, services and interrelations between

—178—

all services and functions. Therefore, DBES con-
tains descriptions of all functions and services and
how they interact, testing methods to determine
where malfunctions exist and information about
how to correct these malfunctions.

To the prototype, we have only implemented
knowledge that debugs the Multi-Media Service
System - MMS System, a subsystem of the switch-
ing system.

Knowledge was represented in the form of a
decision tree and its fragment is shown below. Note
that the original knowledge data was extracted in
Japanese.

1- Inspect the lamp of the MMS
1-1-HLT OFF
Dump the number of the NCU and verify the
terminating call line
1-1-1-NCU number is 15
Dump the NLC of the SCU and the trace data
1-1-1-1-The status is 0 and there is trace
The signal was ignored. Is the SIG
of the trace data noticing
terminating call?
1-1-1-1-1-Yes...
1-1-1-1-2-No...
1-1-1-2-The status is 0 and there is no trace
Check the SEND parameter of the NLC
1-1-1-2-1-NG...
1-1-1-2-2-OK...

1-1-1-6-The status is not 0, 5, 6, 10 or 11.
1-1-2-NCU number is 16 ...

1-1-5-NCU number is not 0, 15, 16 or 17
1-2-HLT ON
Verify where does it fail using the trace data
1-2-1-APL
Where does it down?
1-2-1-1-SVC
1-2-1-1-1-The parameter list...

' 1-2-1-3-Logic ...
1-2-2-Driver ...
1-2-3-05 ...

Fig 1: A fragment of knowledge exztracted. Numbers of the

.nodes are altered for convenience.

3. The DBES

This section gives a brief description of the
system.

The DBES tries to debug errors and malfunc-

tions using information provided by the consultant
during the session and information from the system
itself. Knowledge of the DBES is stored in the
form of a set of rules. The set of rules contains
knowledge about the debugging environment and
the inference of the.system is made using the rules
of this set. Information that does not interfere in
the inference is stored in separated files.

The inference engine is based on the produc-
tion systems. Briefly speaking, the system asks a
series of questions to the consultant. Each ques-
tion is followed by a series of alternatives. Each
alternative is a potential answer of that question.
When the consultant chooses a given alternative,
this information is stored in the working memory
and after a process of pattern matching, a new
question is asked to the consultant. When enough
information is collected by the system, it then
displays a message explaining the cause of the
error and suggesting what the consultant must do
to correct the bug.

Besides the usual inference, the system has a
special mechanism that allows the manipulation of
doubtful information. Here this information ‘is
called unknown inforﬁation and the mechanism
that deals with this information, including the
mechanism that backtracks the
information (feedback unknown), is called unknown
treatment mechanism.

unknown

The inference engine and the unknown treat-
ment mechanism are the principals of this system,
-and we'll call it inference mechanism.

" The following are many of the options avail-

. able that are features and tools of the system that

help the consultant to use the system.

- see dynamic memory - displays all dynamic
data available.
initial information - allows the consultant to

inform, before the inference starts, all informa-

tion that is known as certain facts.

- mark information - marks some information
that in the following inferences will be con-
sidered as true facts (this information is added
to the initial information).

—179—

- _ take off work memory - erases information
from the working memorj.

- more information - displays some auxiliary
information that does not belong to the infer-
ence mechanism.

- show conclusions - displays all the possible
conclusions that can be taken.

- tree structure - displays the rule data-
base(static memory) in the form of a tree
structure.

- editor of rules - allows the alteration of the
knowledge data. It can be done during the
inference or separately of it.

Almost all the options described above are
available by activating the help menu of the sys-
tem.

4. Giving complementary information

It was shown that, in some cases, the consul-
tant needs some help to interpret the system’s mes-
sage or wants a more detailed explanation of some
question or conclusion provided by the system. In
these cases, the consultant only needs to select the
option more information and then the system
displays more detailed information about the con-
tents of the rule or about the debugging environ-
ment.

) symptoms,
final user description

of the bug
detection of the

i
n
t
e
r

]
8
]
B
=
3
z
@
aQ
@«
[
D0 -

Information displayed is called auziliary infor-
mation, or simply more information. Any kind of
information may be displayed. For example, the
system can display messages and tables. If no auxi-
liary information is available to some rule, a mes-
sage that there is no information is displayed.

The advantages of the auziliary information
are that it does not interfere in the inference
mechanism and it supplies the consultant with
more information, advising what the consultant
must do, explaining the structure and components
systems and

of switching complementing

consultant’s knowledge.

5. The unknown treatment mechanism

Switching software contains many technical
words and has many controls to manipulate. So,
sometimes the consultant may not understand the
meaning of some questions made by the system.
And sometimes the consultant may not know the
correct answer of the question being asked by the
system. There will also be times when, although
the consultant understands the 'meaning of the
question and its alternatives, and although the
consultant can verify which is the correct answer,
the consultant judges that verifying the correctness
of some answer will waste time, so that choosing
the most probable answer will be more efficient

control
mechanism
' knowledge
base

knowledge
acquisition
mechanism

Fig 2: The DBES architecture

—180—

than choosing the correct one.

In these cases, the system allows the consul-
tant to choose the option 'unknown’ which informs
that the answer to a question may not be correct.
This question is called unknown guestion. Then the
system re-asks the unknown question, asking the

consultant to select the most probable answer from ;

among the alternatives. It is called unknown infor-
mation. This unknown information is stored in the
unknown memory and in the working memory and
the inference continues normally, considering this

unknown information as a real fact. Note that if }

the consultant doesn’t know which is the most
probable alternative, then the consultant is advised
to select, from top to bottom, the alternatives
displayed.

When the consultant notes that inference is
strange, or that inference tended to a conclusion
that is not satisfactory, then the unknown informa-
tion selected before is probably the cause of the
deviation. So, the system allows the consultant to
re-answer the unknown question, using the option
feedback unknown. When the consultant selects this
option, the unknown question is re-asked, and new
information is required to be selected. This new
option may or may not be unknown information.
Once this new information is selected, then infer-
ence continues from this point.

More than one unknown information may be
selected by the consultant. The system deals with
this unknown information using a stack structure.
Each unknown information is stored on the top of
the unknown memory. When the option feedback
unknown is chosen, the last unknown information
stored in the unknown memory is deleted from this
memory and the unknown question related to this
unknown information is re-asked. And so the infer-
ence goes on.

Another memory, called ez-unknown memory
is also used, and it contains all information that
once was unknown information. So, when the
option feedback of unknown information is
activated, the information on the top of the unk-
in the ex-unknown

nown memory is stored

memory. This memory is used to remind the con-

sultant of all unknown information that was back-
tracked.

See figure 3 to understand the mechanism

described here.

Fig 3: For clarity, we’ll explain the unknown mechanism using
a tree represented in Fig 1. The arrows symbolize the infer-
unknown information. X

ence. Question marks symboli

marks represent information erased from the working memory

when option feedback of unknown is activated.

Note that facts selected by the consultant
after some unknown option is chosen are con-
sidered as certain facts, except when the option
unknown is again selected, and they are not
deleted from the working memory when the option
feedback unknown is activated. Therefore, these
facts will be certain facts during the whole consul-
tation. If the consultant is not sure whether or not
the information that comes after some unknown
information is correct, the consultant must select
the option 'unknown’ again, and identify it as unk-
nown information.

6. *Initial information’ and *mark information’

There are times when the consultant already
knows some facts about the debugging environ-
ment. And there are times when some facts do not
alter while debugging some specific field of the
debugging environment. These facts are called here
initial information and they can be initialized
before the inference starts.

When beginning the consultation, the DBES

—181—

first shows a menu of options, called here simply as
first table. All the data in the first table is stored in
the initial information date base. Each option is a
description of some status or is some information
regarding the debugging environment. The consul-
tant is asked to select any number of options from
this table that are to be considered as true facts.
All facts selected are stored in the initial informa-
tion memory and when beginning each
consultation, the facts stored in this memory are
loaded into the working memory. Then the system
starts the inference. So, information selected from
the first table is used in the inference.

In many cases, however, the consultant will
only realize options that should be initial informa-
tion when they appear during the inference, i.e.,
when the consultant is requested to inform some
fact during the analysis he/she is doing, he/she
recognizes that this fact will be always true. So,
the consultant can mark this information so that it
will be stored in the initial information memory
and be used as an initial information during subse-

quent consultations.

The initial information can be used in subse-
quent consultations, until alterations are required.
This solves the annoyance of having to input con-
secutively information that does not vary while
debugging a specific ‘field.

7. Seeing the routes of the inference

During the inference, there will be times when
the consultant wants to see, without continuing
the inference, the possible steps that follow the
inference done till now, i.e., using a tree, the con-
sultant wants to see the descendants of some node
in order to certify that the consultant is not devi-
ating from the real cause of the bug or to analyze
the possible alternatives to decide which answer is
the best for some question of the DBES. Two
options are available in the DBES that deal with

this problem. Let us see them now.

7.1. Displaying Final Conclusions

There are times when the consultant is not

interested in the inference but in the conclusions

that some bug may lead to. This is very often done
by experienced users of switching systems software,
and from the conclusions displayed, the user selects
the one that fits the bug (or the one that the user
judges so) and corrects it. Therefore, the steps of
inference are ignored here. Obviously, the user may
select a false conclusion. But in almost all cases,
experienced users can, looking at all the final con-
clusions, determine what the most prcbable cause
of the bug is.

The show conclusions option displays all the
possible conclusions that can be achieved from the
point of inference where this option is invoked.-

7.2. Rule-based data represented in Decision Tree
structure

It is clearly obvious that interpretation of a
decision tree is easier than interpretation of a set of
rules, especially when the number of nodes or rules
is large.

Given some rule, the free structure option
displays all the productions that appears in the
derivation of this rule, represented as a decision
tree. The consultant can see, using this option, all
the possible derivations from the rule, and judge
whether or not to continue the inference.

This option is also important while editing
rules, because it can organize knowledge inputed as
rules, For example, looking at the tree, ome can
determine which rules are missing and/or which
rules cannot be derived because of the lack of
information, because in the tree these rules are
displayed in different colors.

8. The ’see dynamic memory’ option

If the consultant wants to know all the infor-
mation already available, i.e., if the consultant
wants to see the dynamic data, the consultant only
needs to choose the option see dynamic memory
from the Help Menu.

Note that the working memory contains cer-
tain facts and unknown facts. Below is a brief
explanation of each of them.

1) Working memory - contains all facts already

—182—

available(known + unknown).

2) Unknown memory - contains only unknown
information.

3) Ex_unknown memory - contains information
that was unknown, i.e., in the process of feed-
back, unknown information deleted from the
unknown memory is stored in the ex-unknown
memory.

4) Deleted_memory - contains information that
was removed intentionally by the consultant
from the working memory.

5) Initial_memory - contains initial information.
It can be thought as a subset of the working
memory.

9. The editor of rules

This editor accepts knowledge represented in
decision trees and transforms it into knowledge
represented as a set of rules. Note that this editor
may also accept knowledge already represented as
a set of rules.

The principal objective of this editor is to
facilitate the experts’ work in representing their
knowledge. For this, many studies about which
knowledge is used and how knowledge is used have
been done to built a more powerful editor that
helps experts’ tasks in elaborating knowledge data.

10. Conclusion

The prototype system is already developed
and members of the First Switching Network Sys-
tems Division are using this system experimentally.
Experts and non-experts are using the system.
Knowledge data covers only some specific fields of
the MMS Systems, and, in this area, the system
has proved satisfactory, but there is a need for
more rules to cover all fields of switching systems

software.

The concepts of unknown treatment and initial
information have proved very useful, as well as the
mechanisms that display final conclusions and
rules represented as tree structures. Besides these
features, experts have now asked for a feature that
creates a history of all bugs detected, showing all

bugs that occurred, their frequency and the ways

used to correct these bugs.
One characteristic of the DBES is its simpli-

city of manipulation. The consultant has no trou-
ble in learning how to manipulate the DBES. A
new consultant will need about 10-30 minutes to
understand the inference mechanism of the DBES
and a few hours to understand and use fully all the
mechanisms and the tools of the DBES.

Based on the prototype developed and omn
their experience, experts estimate that when more
rules are added to the knowledge data, DBES will
be able to detect 60-70% of the bugs that occur in
switching systems software. Bugs not covered by
the DBES are those that have never occurred and
those which are so complex that even experts can
not predict them.

Time spent in debugging tasks will be 40-50%
shorter when using the DBES. And by using the
DBES, novices will also be able to debug errors,
and so, the complex task of debugging will be
shared among experts, experienced users and
novices alike, thus reducing the experts’ overload.

Experts agree that the DBES is not only a
system that performs debugging tasks. DBES may
also be used in other domains, such as in switching
systems design, giving support in the process of the
design of such systems.

Our future work is to enhance the DBES,
allowing an efficient manipulation of a large
amount of knowledge data. We would also like to
construct a more powerful editor that orients and
aids experts’ work in transferring their knowledge
to the DBES and that allows the modification of
knowledge data in real time.

Acknowledgement. We would like to thank all

persons who helped us in the elaboration of the
expert knowledge data, specially Kousei KAK-
IHARA and Yasushi MITSUGI We are also grate-
ful to all other members of the Software Engineer-
ing Development Laboratory and the First Switch-
ing Network Systems Division.

—183—

REFERENCES

1]

[2]

(3]

4

Brownston L., Kant E., Farrell R., Martin N.,
Programming Ezpert Systems in OPS5 - An
introduction to Rule-based Programming,
Addison-Wesley, Reading, MA, 1985.

Cunningham, P., Brady, M., Qualitative Rea-
soning in Electronic Fault Diagnosis,

IJCAT'87, ppdd3-445, 1987.

Davis, R., Lenat, D.B., Knowledge-based sys-
tems in Artificial Intelligence , McGraw-Hill,
1982.

Hayes-Roth F., Waterman D.A., Lenat D.B.,
Building Ezpert Systems, Addison-Wesley,

Reading, MA, 1983.

—184—

(sl

(7]

(8]

(9]

Pepper, J., Kahn, G.S., Repair Strategies in a
Diagnostic Ezpert System, IJCAI'87, pp531-
534, 1987.

Quinlan, J.R., Generating Production Rules
from Decision Trees, Knowledge Acquisition,
1JCAI’87, pp304-307, 1987.

Shortliffe E.H., Buchanan B.G., Rule-based
Expert Systems, Addison-Wesley, Reading,
MA, 1984.

Shortliffe E.H., MYCIN: Computer-based Med-
ical Consultations, Elsevier, NY, 1976.
Winston, Patrick Henry, Artificial Intelligence,

Second Edition, Addison-Wesley, Reading,
MA, 1984,

