V7 bY 2 7ITE 64—12
(1989. 2. 2)

MEEORE L L X—F DREDL O T O Sick aHkkicd

KEML, ZAES
BT BINEAUIILAT

LOTOSIZISOIC BT T n b VRl RlC G Sh iR B TH 5, BE, o

POTa b NS L CEERBINRENTV B, B2id, 7O b 3NLIAO—RRI

%%%}g%%ﬁmﬂﬂ%&l LR -5 OREE %Y, Th 5%L0T0Siz & b HHkse
{774 - Co ’

ZDERIIIRD—DOTH 3,
(1) —RRICRIRAIIFFIYS IR & BT EIRY IS AN T B, LOTOSIZHIS 7 — & BIsak
&zlt%:f ntéxaam'_%@%ﬂﬁm%ﬂ%mﬁ LTWADT, MEOHEEGEBRICHWTHS

EBbhs,
(2)LOTOSIIBIFEOS 1 D FHIBICRId B30T PN TV B, SRIBHEBOIRE
EATWS DN S, TOBIC HbBEICED S 2 ELAD X ORI
THLOTOSOHBERSTEE L COWEEFNTE { & LAY ETH 3, *

= DBKTIALOTOSIE & 3R ORIEE & x L A — & ORI & 130 AR L. LOT0SD
FISREREE BB, & HIZLOT0SDT T 75 3 ¥ 7 BT\ T & BB 5,

Specifications of Library and Lift Problems in LOTOS

Kazuhito OHMAKI and Kokichi FUTATSUGI

Electrotechnical Laboratory
1-1-4 Umezono, Tsukuba, Ibaraki 305, JAPAN

LOTOS was designed to specify protocols. We have applied LOTOS to specify more general
problems, Library and Lift problems, other than protocols.

Our motivations are :

(1)Generally, any problem has two features of static and dynamic behaviors. LOTOS provides the
frameworks for both abstract data types and process communications. We think that LOTOS is
suitable to specify by using these two frameworks to spececify static part and dynamic part of the
given problem.

(2)There are already lower layer protocols written in LOTOS. The application layers will be
written in LOTOS in the future. To make a feasibility study in the application area, we should try
to specify more general problems in LOTOS other than "standard" protocols.

In this paper, we show the specification of Library and Lift problems in LOTOS, and dicuss the

feasibilities of LOTOS from the viewpoint of a general specification language. We also observe
the requirements of LOTOS programming environment.

1. Introduction

LOTOS (Language of Temporal Ordering Specification)
has been designed to specify OSI protocols by FDT
(Formal Description Technique) experts[3]. LOTOS has
two features of abstract data type definitions and process
definitions. The data type definitions are based on
algebraic specification of data types. The process
behavior definitions are bases on CCS (Calculus of
Communicating Systems){7]. There are several protocol
specifications written in LOTOS[4,5,6],

We have applied LOTOS to specify more general
problems, i.e. Library and Lift problems[l]. Our
motivations are :

(1)Generally, any problem has two features of static and
dynamic behaviors. LOTOS provides the frameworks
for both abstract data types and process communications.
We think that LOTOS is suitable to specify by using
these two frameworks to spececify static part and
dynamic part of the given problem.

(2)There are already lower layer protocols written in
LOTOS. The application layers will be written in
LOTOS in the future. To make a feasibility study in the
application area, we should try to specify more general
problems in LOTOS rather than "standard" protocols.

Our experiment show us advantages and disadvantages
of LOTOS as a specification language.

In the specification of the Library problem, we will
conclude that this type of problems is composed mainly
of data type definitions. And most operators are defined
in the data type definitions. In the process definitions,
we only define two concurrent processes where staffs of
the library and borrowers are acting independently. In
the case of the Lift problem, most part of the
specification consist of process definitions. In this
specification, we used the same logical structure as in
[2]. LOTOS can explicitly specify the communication
between different processes, but CSP can not.
Moreover, data types are exactly specified within the
LOTOS specification. For example, a queue structure is
employed as a process in [2], but in LOTOS we can
specify it as a data type.

We will also consider the requirements for programming
environment for LOTOS.

From the point of the programming environment of
LOTOS, there are few LOTOS processors other than [8].
A sophisticated programming environment will be
needed to browse type definitions and process
definitions. Without one, we could scarcely write down
any LOTOS programs.

We assume that the readers are familiar with LOTOS in
the paper. Readers can refer the exact definitions of
LOTOS in the documents [3].

2. Specification of the Libray problem
2.1 Definition of Library Problem

The library problem is defined in [1] Here is its
informal specification.

A library data base accepts the following transactions:

1. Check out a copy of a book/ Return a copy of a book;
2. Add a copy of a book to/ Remove a copy of a book
from the library;

3. Get the list of books by a particular author or in a
particular subject area;

4. Find out the list of books currently checked out by a
particular borrower;

5. Find out what borrower last checked out a particular
copy of a book.

There are two types of users of the data base: staff users
and ordinary borrowers. Transactions 1, 2, 4, and 5 are
restricted to staff user, except that ordinary borrowers
can perform transactions 4 to find out the list of books
currently borrowed by themselves.

2.2 Specification steps

We have developed the LOTOS documents according to
the following steps.

(1) Interface gates

Whatever specification language we use, we have to
decide the interface between the observer (outer
environment) and the specified system. In the case of
LOTOS, this interface should be specified in terms of
gates.

There are two types of users of the library system; staffs
and borrowers. Therefore, we have decided to use two
different gates for the communication between the outer
environment and the library system. We call them -
staffGate and BorrowerGate.

type QueryByStaffOnlyType is Boolean
sort QueryByStaffonly

opns doBorrow . : => QueryByStaffonly

doReturn : => QueryByStaffonly
doadd i => QueryByStaffOnly
doDelete : => QueryByStaffonly
d 1 -> QueryByStaffonly
doShowl, 1 => affonly

eq : QueryStaffOnly, QueryStaffonly -> Bool
eqns ofsort Bool
doBorrow eq doBorrow = true;
doBorrow eq doReturn = false:
endtype
type QueryByBothStaffAndBorrowerType is Boolean
sort QueryByBothStaffAndBorrower
opns doShowListByAuthor : ~> QueryByBothStaffAndBorrower
doShowList. ject : —-> QueryByBothStaf:
eq : QueryByBothStaffAndBorrower,
QueryByBothStaffAndBorrower -> Bool
eqns ofsort Bool
doShowListByAuthor eq doShowbListByAuthor = true:
doShowLi eq doShowListBySubject = false;

doShowListBySubject eq doShowListBySubject = true;
doShowListBySubject eq doShowListByAuthor = false;
andtype

Fig.1 Data types for query on a data base.

queries attributes
doBorrow Sta: ?query:QueryBy £fonly?paraml:Bo ?param2:Book
doReturn StaffGate?query:QueryByStaffOnly?paraml:BorrowerName ?param2:Book

doAdd

doDelate
doShowBorrowedBooks
doshowLastBorrower
doShowListByAuthor
doShowListBySubject
doShowListByAuthor
doShowListBySubject

StaffGate?query:QueryByStaffOnly?param:Book

StaffGate?query:QueryByStaffOnly?param:Book

StaffGate?query:QueryBy ££fOnly? H werName !bookList (param, BorrowedQueue)
staffGace?qus:y:QuuyBystattcnlyzparamzaoek!botrowerName(param,BorrowedQuaue)
StattcateEquery:QusryByBoths:aEtAndBorrower?param:Au:hotName !searchByAuthor (param, CollectedQueue)
s:atfcata2qua:y:QuaryayBathscaftAndBcrzowsr?pa ram:SubjectName ! searchBySubject {param, CollectedQueue)
BorrowerGatelquery :QueryByBothStaffAndBorrower?param:AuthorName! searchByAuthor (param, CollactedQueua)
BorrowerGate?query:QueryBy ff. ower?param: Isea ject (param, CollectedQueue)

Table1 Queries and gate attributes

(2) Define query types

In Fig.1, we define two types for queries to the Library
system;
QueryByStaffOnlyType and-
QueryByBothStaffAndBorrowerOnlyType.
These types define constants (nullary operators) for
queries. And the former type is for queries only allowed
to staffs, and latter is for both staffs and borrowers.

(3) Define gate attributes

Then we attach several attributes on two gates. These
attributes are corresponding to inquiries and responses
on the data base. The Table 1 shows the queries and the
corresponding attributes. For example, the attributed
event
StaffGate?query:QueryByStaffOnly
?paraml:BorrowerName
?param? :Book
is only valid when the variable query is doBorrow. This
validity is checked using an event with a selection
predicate, that is,
StaffGate?query:QueryByStaffOnly
?paraml :BorrowerName
?param?2 :Book
[query eq doBorrow]

There are several other data types and process parameters
in Table 1. We will explain them soon.

(4) Define data types

To complete the specification, we have to declare all
necessary data types appeared in Table 1.

The sorts BorrowerName and Book are shown in
Fig.2(a) and (b). These sorts represent the names of
borrowers and books.

CollectedQueue and BorrowedQueue in Table 1 are
process parameters of the main process of the Library
system. The data types of these parameters are
CollectedBookQueueType and
BorrowedBookQueueType
which are shown in Fig.3. These are renamed types
derived from
QueueOfCollectedBookType and
QueueOfBorrowedBookType
of Fig.4. Moreover, we are using the formal list type to
keep books in the library and borrowed books as shown
in Fig.5. All operators are renamed to be appropriate
names for the Library system.

CollectedBookQueueType is for the data base for
collected books in the library. BorrowedBookQueueType
is the data base for borrowed books. In Table 1, the
parameters CollectedQueue of
CollectedBookQueueType and BorrowedQueue of
BorrowedBookQueueType are initialized to be empty
when the process is invoked. For the parameter
CollectedQueue, we can perform the operators add,
delete, searchByAuthor, and searchBySubject.
For BorrowedQueue, WE Can use the operators borrow,
return, bookList, and borrowerName. These
operators are corresponding to the transactions in 2.1.

type BookType is ype, ' Auth 'ype, Subj ype
sozts Book
opns triple

namels

: BookName, AuthorName, SubjectName -> Book
: Book -> BookName
authorIs : Book -> AuthorName
subjectIs : Book -> SubjectName
eqns forall bn:BookName, an:AuthorName, sn:SubjectName
ofsorts BookName nameIs(triple(bn, an, sn)) = ba;
ofsorts AuthorName authorIs(triple(bn, an, sn)) = an;
ofsorts SubjectName subjectIs(triple(bn, an, sn)) = sn;
andtype
{a) Definition of BookType

type irType is 'ype, ype
sorts BorrowerBookPair
opns ‘tuple Book -> ir
Is i =>
bookIs : BorrowerBookPair => Book
equs forall p: x, bk :Book

ofsort BorrowerName borrowerIs(tuple(borrower, bk)) = borrower;
ofsort Book bookIs(tuple (borrower, bk)) = bk;

endtype »
: {b) Definition of BorrowerBookPairType
Fig.2 Data types related to Books
type CollectedBookQueueType is QueueOfColl vpe, xr ListType
Coll for Queue
opns add : Book, CollectedBookQueue ->' CollectedBookQueue
delete : Book, Coll o -> Coll Queue
searchByAuthor : AuthorName, CollectedBockQueue =-> BookList
ct : Subj CollectedBookQueue —> BookList

cbq:CollectedBaokQueue,
an:AuthoxN; sn:Subj
ofsorts CollectedBookQueue
add(b, cbq) = b +-- cbg:
delete(b, cbq) = dequeuelf{cby, b);
ofsorts BookList
isInQueue (cbq, triple(bn, an, sn)) =>
searchByAuthor (an, cbq) =
triple(bn, an, sn).searchByAuchor(an, dequeueIf (cbq, triple(bn,an,sn)));
not {isInQueue (cbq, triple(bn, an, sn)) => searchByAuthor(an, cbg) = nil;
isInQueue(cbq, triple(bn, an, sn)) =>
searchBySubject (sn, cbq) =

ySubj
eqns forall b:Book,
bn:

txiple(bn, an, sn).searchBySubject (sn, dequeuelf(cbq, triple(bn,an,sn))):

not (isInQueue(¢bq, triple(bn, an, sn)) => searchBySubject (sn, cbaq) = nil:
endtype

type ype is QueueQ ookType, Bor: ListType
dby sortnames Queue for Queue
opns borrow Book, Queue -> Bor Que
return Book, Queue ~> o
bookList : Que -> ist
b : Book, Bor Queu => BorrowerName

eqns forall person:BorrowerName, book:Book, bbq:BorrowedBookQueue
ofsort BorrowedBookQueue

borrow(person, book, bbg) = tuple(person, book) +-- bbq;

return{person, book, bbg) = dequeuelf (bby, tuple(pexson, book));
ofsort BorrowedBookList

isInQueue (bbg, tuple(person, book)) =>

bookList (person, bbg) =

book.bookList (person, dequeuelf (bbq, tuple(person, book))):
not (isInQueue (bbq, tuple(person, book}) => bookList (person, bbq) = nil;
ofsort BorrowerName
isInQueue (bby, tuple(persor, book)) => borrowerName (book, bbg) = persan:
endtype :

Fig.3 Definitions of CollectedBookQueueType and BorrowedBookQueueType

type FormalQueueType is Boolean, Element
sorts Queue

opns empty : -> Queue
+=- i Eleément, Queue ~> Queue
—t_ : Queue, Element =-> Queue
Teq_ : Queue, Queue . -> Bool
dequeueIf : Queue, Element =-> Queue
isEmpty : Queue ~> Bool

isInQueue : Queue, Element -> Bool
eqns forall g, ql, g2 : Queue, e, el, e2 :
ofsort Queue
e +-- empty = empty -—+ e;
el +-~- (q --+ e2) = (el +-- q) ~=+ e2;
isInQueue(g --+ el, e) and {el eq e) =>
dequeueIf(q --+ el,e) = q;
isInQueue(q =-—+ el, e) and (el ne &) =>
dequeueIf (g -—+ el,e) =dequeuelf(q,e);
not (isInQueue(q, e)) => dequeuelf(g, e) = q:
ofsort Bool
isEmpty (empty) = true;
isEmpty(e +-- q) = false;
empty eq empty = true;
{e +=- q) eq empty = false;
empty eq (e +-- q) = false;
(el +-- ql) eq (e2 +-- q2) = (el eq e2) and (ql eq q2);
isInQueue (empty, e) = false; E
isInQueue(q --+ el, e} = (el eq e) or isInQueue(q, e):
endtype

Element

type QueueOfCollectedBooksType is FormalQueueType
actualizedby BockType using sortnames Book for Element
endtype

typa Queued ype is FormalQ vpe
actualizedby BorrowerBookPairType using
sortnames BorrwerBookPair for Element
endtype

Fig.4 Queuss for coilected books and borrowed books

This process is composed from two behavior
expressions. The first one is for staffGate and the
other one is for BorrowerGate. These two expressions
are composed by a choice operator []. Each behavior
expression is composed by choice operator [] with
guarded expressions.

(5) Main process of the Library system
We show the main process of the Library system in

Fig.6. The expressions which we will not elaborate on
are commented out for brevity.

For example, the part (A) and (B) in Fig.6 have the
following meanings:

If the query doBorrow command is entered at the gate
staffGate with attributes paraml and param2 whose
values are BorrowerName and Book, then the operation
borrow will be performed on BorrowedBookQueue.

In the case of (C), when doshowBorrowedBooks is
entered at the gate staffGate with param of
BorrowerName, then the third argument
bookList (param, BorrowedQueue) is returned to the
outer environment.

The part (D) in Fig.6 shows doShowListByAuthor on
the gate BorrowerGate. This returns the value of
searchByAuthor operation on CollectedQueue.

We omit the explanations on other parts of behavior
expressions in Fig.6.

(6) Whole specification of the Library system

Fig.7 shows the whole structure of the specification
LibrarySystem. The parameter MaxBorrowable is of
sort Nat and is used to check whether a borrower wishes
to borrow the number of books exceeding this number or
not. This is used in the part (A) of Fig.6. The part (A)
of Fig.7 gives three initial values for three parameters for
the process MainProc. This part initializes the
parameters CollectedQueue and BorrowedQueue to be
empty.

3. Specification of Lift Problem
3.1 Definition of Lift problem

An n lift system is to be installed in a building with m
floors. The problem concerns the logic to move lifts
between floors according to the following constraints:

1.Each lift has a set of buttons, one for each floor.
These illuminate when pressed and cause the lift to visit
the corresponding floors.

2.Each floor has two buttons (except ground and top
floor), one to request an up-lift and one to request a
down-lift. These buttons illuminate when pressed. The
illumination is cancelled when a lift visits the floor and is
either moving in the desired direction, or has no
outstanding requests. In the latter case, if both floor
request buttons are pressed, only one should be
cancelled. The algorithm to decide which to service first
should minimize the waiting time for both requests.
3.When a lift has no requests to service, it should remain
at its final destination with its doors closed and await
further requests.

4.All requests for lifts from floors must be serviced
eventually, with floors given equal priority.)
5.All requests for floors within lifts must be serviced
eventually, with floors being serviced sequentially in the
direction of travel.

6.Each lift has an emergency button which, when
pressed, causes a warning signal to be sent to the site
manager. The lift is then deemed 'out of service'. Each
lift has a mechanism to cancel its 'out of service' status.

3.2 Specification

Instead of describing the development steps precisely as
in Library case, we show here the final result and its
structure. The basic structure of our specification is

basically the same as that of the CSP trial 1,

type FormallistType is Element, NaturalNumber
sort List
opns nil : -> List
. @ Element, List -> List
length : List =-> Nat
eqns forall e:Element, l:List
ofsort Nat .
length(nil) = 0;
length(e.l) = Succ(length(l)):
endtype

type ListOfBookType is FormalListType actualizedby BookType using
sortnames Book for Element
endtype

type BookListType is ListOfBookType renamedby
sortnames BookList for List
endtype

type BorrowedBookListType is BookListType renamedby
¢ List for BookList
opnnamas bookListLength for length
endtype

Fig.5 Data types related to borrowed book list

process MainProc [StaffGate, BorrowerGate]
(CollectedQueue:Coll okQueue, Bor
MaxBorrowable:Nat) : noexit :=
(StaffGate ?query:QuerySyStaffOnly ?paraml:BorrowerName ?param2:Book
[{query eq doBorrow)
and
(bookListLength (bookList {paraml,
MaxBorrowable)]:
MainProc [1

Queue:

dQueue)) le
(x <==(a) *

(CollectedQueu
borrow (paraml, param2, BorrowedQueue),
MaxBorrowable) . (* <--(8)
{1 (* behavior expression of doReturn *)
{1 {* behavior expression of do2dd *)
[] (* behavior expression of daDeleta *}
{1 StaffGate Iquery:Q affonly ?pa

IbookList (param, Borrowad@ueue)

[query eq doShowBorrowedBooks);

- {CollectedQueue, BorrowedQueue, MaxBorrowable) (* <==(C) *)
{1 (* behavior ion of doShoula *)
(1 (* behaviox ion of doShowl v *)
[] (* behavior expression of doShowListBySubject *)

(2query:QueryByBothStagf. 2param:
IsearchByAuthor (param, CollectedQueue)
[query eg doShowListByAuthorl;
MainProc{StaffGate, BorrowerGatel
(CollectedQuene, BorrowedQueue, MaxBorrowable)
{1 {(* behavior expression of doShowbListBySubject *)

(* <=-(D) *)

endproc (* MainProc *)

Fig.6 Definition of MainProc

taf€Gat

1 (MaxBorrowable:Nat) :
noexit

specification LibrarySy

(* standard types are from Appendix A of DIS 8807 *)

Llibrazy
NaturalNumber, Boolean, NonEmptyString
andlib
(* type definitions *)
behaviour
MainProc [StaffGate, BoxrowerGate] (empty, empty, MaxBorrowable) (* <--(A) *)
whare
MainProec [1
(Coll :Coll Queu Queue Queue.
MaxBorrowable:Nat) : noexit :=

(* behavior expression for StaffGate *)
i
(* behavior expression for BorrowerGate *)
andproc
endspec

Fig.7 The whole specification of Library System
3.2.1 Logical structure of process

We graphically show the outermost structure of
LiftSystemin Fig.8. There are three gates to interface
between the LiftSystem and the outer environment.
The gate LiftButton manages the buttons at each lift.
The gate FlooxButton is for up or down buttons at each
floor. And LiftMovement is for the lift movement such
as arriving from or leaving for up or down stairs. From
the specification of 3.1, we know the system should be
parameterized with the number of lifts (n) and the
number of floors (m). Therefore, there are two
parameters e and £ in Fig.8. These parameters will be
initialized to be n and m when the LiftSystem is
activated. :

3.2.2 Gate attributes

Each gate has attributes as shown in Fig.8. These
attributes should be interpreted as follows.

For the gate LiftButton, the event
LiftButton?lift_num:Nat?floor_ num:Nat

is of pressing the (floor_num)-th floor request button at
the (lift_num)-th lift. The event

LiftButton?lift num:Nat

?emergency_or_BackInService:
EmergencyNotification

is of pressing the emergency or BackInService button
at the (lift_num)-th lift. And the event

LiftButton!lift num!floor_num
is of cancelling the illumination of the (floor_num)-th
floor request button at the (lift_num)-th lift.

For the gate FloorButton,
FloorButton?floor_ num:Nat
2up_or_down:Direction
is the event of pressing the up_or_down floor button at
the (floor_num)-th floor. The event
FloorButton!floor num!up or down
is of cancelling the illumination of the up_or_down floor
button at the (floor_num)-th floor.

For the gate LiftMovement,
LiftMovement!lift_num!floor_num
lup_or_down!leave_or_arrive

is to indicate (lift_num)-th lift arrives/leaves from/for
up/down stairs at the (floor_num)-th floor, depending on
values of up_or_down and leave_or_arrive. The types
of up_or_down and leave_or_arrive contain constants to
indicate the directions, but we omit their definitions for
brevity.

This design of gate attributes is one of the most
important things when programming in LOTOS. Given

a specification in some natural language, we have to add

"meanings" or "interpretations"” to gate attributes. There
is no explicit way to describe these "meanings" of gate
attributes in LOTOS specification. This point should be
improved in a later version of LOTOS.

3.2.3 Data types to be used ‘

As in CSP approach{2], we use two queues to decide the
direction of lift movement: one queue is for getting off
requests from lift buttons at each lift and the other one is
for picking up request from up or down buttons at each
floor. Each queue has the sort Nat to indicate a floor
number to be serviced as its element. Therefore, as
shown in Fig.9, we define a queue FloorQueueType
whose elements are floor numbers, and define
LiftButtonQueueTlype and FloorButtonQueueType
by renaming sort names for FloorQueue.

We create the same process corresponding to each lift.
Each lift process contains a queue of
LiftButtonQueueType. This queue keeps all getting
off requests caused by the lift buttons. One queue of
FloorButtonQueue exists in the whole system and is
shared by all lift processes. To decide the floor number
to be serviced, each lift process looks around these two
queues. To minimize the waiting time for both requests,
we need operators atMost and atLeast which return
boolean values according to:

atMost (queue,
number in queue, and

atLeast (queue, f£)
number in queue.

£) = true if £ is the largest

true if £ is the smallest

Roughly speaking, if a lift arrives at the floor £ from
downstairs and atLeast (queue, f£) i true, then this
lift has to go upward. These queue types are prepared
just to make this decision.

FloorButton
LiftButton
LiftMovement

LiftSystem

O e
O parameter

r—_—l process

LiftButton ?1ift_num:Nat ?floor num:Nat

LiftButton ?1ift_num:Nat ?emergency_or_BackInService:EmergencyNotification
LiftButton !1ift_num !floor_num

FloorButton ?floor_num:Nat ?up_or_down:Direction

FloorButton !floor_num !up_or_down

LiftMovement (lift_num !floor_num !up_or_down !leave_or_arrive

e:Nat (* number of lifts *)
f:Nat (* number of ‘floors *)

Fig.8 Interface of LiftSystem and gate attributes

type FloorQueueType is NaturalNumber, Boolean
sorts FloorQueue

opns empty -> FloorQueue
+-- : Nat, Fl -> F1
- : FloorQueue, Nat ~=> FloorQueue

dequeue : FloorQueue, Nat -> FloorQueue
eq : FloorQueue, FloorQueue -> Bool
TsEmpty : FloorQueue ~> Bool
atMost, atLeast, isInQueue : FloorQueue, Nat -> Bool
aqns forall fq, £ql, fq2 : FloorQueue, £, £1, £2 : Nat
ofsort FloorQueue
£ +-- empty = empty =-+ f;
£1 +== (£q ~=+ £2) = (£l +-= £q) --+ £2;
isInQueue(fq ==+ £1, £) and (fl eq £) =>
dequeue (fq --+ £1, f) = fq:
isInQueue({fq --+ £1, £) and (fl ne f£) =>
dequeue (fq --+ f£1, f) = dequeue(fq, £}/
not (isInQueue(fq, £)) => dequeue(fq, £) = £q;
ofsort Bool
isEmpty (empty) = true;
isEmpty(f +-- £q) = false;
empty eq empty = true;
fq eq £q = true;
(f +-- £q) eq empty = false;
empty eq (f +-- f£q) = false;
(£1 +-- £ql) eq (£2 +-- £q2) = (f1 eq £2) and (fql eq fq2};
atMost {(empty, f) = true;
atMost (fg ~-+ £1, £) = (£1 le f) and atMost(fq, £);
atLeast (empty, £) = true;
atLeast (£q -—+ £1, £) = (f1 ge £) and atleast(fg, £);
isInQueue (empty, £} =~ false;
isInQueue({fq --+ £1, £) = (£l eq f) or isInQueue(fq, £);
endtype (* FloorQueueType *)

type LiftButtonQ ype is Fl ype B
renamedby sortnames LiftrButtonQueue for FloorQueue
df (* Li 'ype *)

type F1l is F1 YP!

b Fl Queue for FloorQueue
(+ Fl ype *)

Fig.9 Definitioﬁ of queues for Lift

specification LiftSystem [LiftButton, FloorButton, LiftMovement]
. (e:Nat, £:Nat) : noaxit

library

NaturalNumber, Boolean
endlib
(* type definitions *)
behavior (* of LiftSystem *)

[(e gt 0) and (f gt 0)1 ->

MainPr s {Lif Flo Lif J{e, £)
where (* subprocs of LiftSystem *)
process Mai {Lif Fl Button, Lif

]
(e:Nat, f:Nat) : noexit :=
hide PickupQueueAtMost, PickupQueueAtLeast, PickupQueueDequeueIf in

(
LiftControll[LiftButton, Lif’ . PickupQ
PickupQueueAtLeast, PickupQueueDequeneIf] (e)
| {PickupQueueAtMost, PickupQueueAtLeast, PickupQueueDequeuelIf] |
PickupQueueControll [F1 PickupQ PickupQueueAtLeast,
. PickupQueueDequeuelf] (f)

)
whare
{* subprocesses for MainProcess *)
endproc (* MainProcess *)
andspec (* LiftSystem *)

Fig.10 The header part of the Lift specification

Ve

fﬁMovement e
i e f

ickupQueueAtMost ickupouaueAlLeasD_éckupQueueDequeuel
ickupQueueAt@_éckupOueueMLea%kupQusueDequeusl

ickupQueueControll

Ve
FloorButton
MainProcess

Fig.11The structure of MainProcess

LiftButton

LiftButton

3.2.4 Subprocesses

Fig.10 shows the the header part of the Lift
specification. At the entrance of MainProcess,
parameters e and £ are checked whether they are positive
numbers. In MainProcess there are two parallel
behavior expressions. One is for the lift control which
manages each lift movement. The other one is for the
pick up queue control which is collecting the pick up
requests from up or down buttons at each floor. In
Fig.11, we illustrate the relations between these
subprocesses. In Fig.10, three gates are hidden to avoid
unnecessary interference between inner processes and
the outer environment.

The process LiftControll keeps each lift process. The
process PickupQueueControll keeps queues from
floor buttons. Each lift process communicate with
pickup queues via three gates; PickupQueueatMost,
PickupQueueAtLeast, and PickupQueueDequeueIf.
Note that, in this example, we prepared these three gates
for three queries to the pickup queues. In the case of
Library problem, we use one gate for several operations.
This is a controversial issue of tradeoffs between the
number of gates and the number of attributes on a gate.

3.2.5 Lift process creation

Fig.12(a) shows a subprocess of LiftControll.
LiftControll includes the process LiftProcCreate.
Fig.13 shows the process LiftProcCreate and its
subprocesses in LOTOS text. As a standard way of
creating similar processes from a template process[6]

we have to use a recursive form like the definition of
LiftProcCreate where MaxLifts limits the number of
parallel processes EachLiftproc. The initial value 1 of
LiftIdis given by the process LiftControll, and then
incremented to Maxnifts during recursive calls of
LiftProcCreate. At each call, EachLiftProc is
created with Lift1d(see Fig.12(b)). EachLiftProc
contains the process LiftIdentification which has a
process parameter LiftId. When some event occurs at
LiftButton, three subprocesses of EachLiftProc, i.e.
LiftButtonInput, Lift, and LiftQueue, are
synchronized by the LiftIdentification process.

Since LiftIdentification only accepts the event with
the parameter LiftId, every event on LiftButton gate

is only accepted by other three processes which have the
same LiftId.

We can decompose these three processes, but we omit
further explanations.

4. Discussions
4.1 From the viewpoint of the specification language

(1) The notion of sort and subsort is needed. For
example, the operations of staffs and borrowers are
defined in Fig.9. If there is some construct for "subset"
or "subsort"”, we will be able to describe these two data
types much easily. In OBJ2{9], we have introduced
these constructs.
(2) The meaning of gate attributes should be explicitly
specified somewhere in the specification. From the
specification, we could hardly understand the meaning of
gate attributes unless there is specification on the
meaning of gate attributes.
(3) Some notion of "theory" will be needed. For
example, we often use eq operators when using guarded

! IHEUIIOM

tmEuuvn

LiftProcCreate

vckupOueueAxMosl] élckupQueueA(Least élckupOueueDequeuel

LiftControll ! |
EckupoueueNMoslﬁ élckupQueueAtLeast ElckupoueueDequeuel
(a) process PickupQueueCentroll
{iftButton) (i

EachLiftProc

[N N J
LiftProcCreate

@:«upcueueAtMosl éickupcusueAtLeast éickupQusueDequeuﬂ

(b) pracess LiftProcCreate

Fig.12 Lift process creation

process LiftControll
[LiftButton, Li. Picky

PickupQueueAtLeast, chkup(zueuebequeuaIf] (e:Nat) : noexit :=
LiftProcCreate
{Li Li. « PickupQ PickupQueueAtLeast,
PickupQueueDequeueIf] (e, 1}
where (* subprocs for LiftControll *)
P LiftProcCreate(Li Li. . PickupQ
PickupQueueAtleast, PickupQueueDequeuelf]
(MaxLifts:Nat, LiftId:Nat) : noaxit :=
[LiftId 1t MaxLifts] ->
(LiftProcCreate
[LiftButton, Li kupQ: AtLeast;
° PickupQueuebequeuelf] (M.axLx.f:s, Succ{LLftId))
1
EachLiftProc
Li Li ., Pick PickupQueueAtLeast,
pickupQueueDequeuelf] (LiftId))
where (* subprocesses for LiftProcCreate *)
process EachLiftProc
(Li Lif; » Pickup(.
3 Least, Pi 1£]
(LiftId:Nat) : noexit :=
(hide LiftQ LiftQ + LiftQueueAtLeast,
L4 1f ify
¢ i Input (L Lifto ify]
| [LiftQueneEnqueue] |
LiftQueue(Li Ii LiftQ

LiftQueueAtLeast, LiftQueueDecueueIf] (empcy, LLE:Id)
| {LiftQueueAtMost, LiftQueueAtleast, LiftQueueDequeuelf,

EmergencyNotify] |

Lift(Lif . PickupQ PickupQueneAtLeast,
PickupQ If, LiftQ LiftQueueAtLeast,
LiftQ 1, ify] (1, nil, Liftid)

)
)
| [LiftButton] |
LiftIdentification{LiftButton] (LiftId)
where (* subprocs foxr EachLiftPros *)

LiftIdentification{LiftButton] (Liftld) : noexit :
LiftButton?Identifier:Nat ?AnyArg:LiftButtonlO[Identifier eq LiftIdl;
LiftIdentification{LiftButton] (LiftId)

(* LiftIdentification *)

process LiftButtonInput ([...]
endproc (* Buttonlnput*)

process Lift [...](floor position:Nat, dir:Direction, LiftId:Nat)
endproc (* fot *)

process LiftQueue [...](g:LiftButtonQueue, LiftId:Nat)
endproc (* LiftQueue *)

endproe (* LiftControll *)

Fig.13 process LiftCantroll and LiftProcCreate

In these cases, we need to define the

expressions.
In OBJ2, we have introduced these

general features.
constructs as well.
(4) Data type specification should be more hierarchical.
Processes can be hierarchically defined by using the key
word where. But data types are written in a flat text.
(5) Error handling or exception handling mechanism
should be implemented in data type definitions. For

example, when trying to delete unentried books from the
data base in Library system, we are using dequeueIf
operator, but if some standard exception handling
meglhanism is implemented, it will be defined much
easily. :

(6) When generating processes from a process template,
a "standard" way of creating is to use Identification
process like Lift processes. This construction is hard
to understand. We prefer to use process or event
labelings like CSP approach.

4.2 From the viewpoint of programming environment

There are several programming environments for
developing concurrent systems[10]. With these in mind,
we list here the necessary conditions of the programming
environment for LOTOS. ‘

(1) Every data type or process should be entered
interactively like Lisp programming environment,
because the order of defining data types or processes are
not always top down or bottom up. Moreover, when we
define some concrete data type, e.g., List, and wish to
change it into a formal type, we should be allowed to do
this kind of restructuring.

(2) Whenever some objects are entered, symbolic
execution should be preformed as much as possible in
order to confirm the definitions.

(3) Hierarchical structure of data types and processes
should be displayed in a proper way. When writing
specifications, we often refer the names of sorts,
equations of data types, or the order of gates. To do
this, we need some assistance of the browsing
definitions around.

(4) For example, a formal type, e.g., List, should
contain usual operators like head or tail. But wedo
not use these operators in our specification Library. In
these cases, there should be some tools to indicate these
unused operators.

(5) When using a parameterized type, we need to know
which parameters should be actualized and which should
not.

(6) Especially in case of process definitions, the support
by graphic interface is quite useful, because it is very
hard to trace the meaning of processes from the LOTOS
text. As an activity in ISO, there are several proposals
for G-LOTOS which intend to incorporate this{11].
Most proposals are similar to some sophisticated "flow
chart” of LOTOS. This might not resolve some
substantial difficulties concerning parallelism. Because
the programmer wishes to know the event transitions by
the expressions in stead of the program text itself. In the
previous section, we use several figures to explain the
Lift problem. LOTOS environment should accept these
graphical data as part of the specification.

(7) Generating processes from some template process is
hard to comprehend. As we stated, the "standard” way
is to prepare identification processes to distinguish each
process. This is a bit complicated. So, we need some
graphic representations for generating processes from a
process template.

4.3 Miscellaneous comments

(1) Generally, a given problem includes both features of
static part and dynamic part. LOTOS has these two
features. So it is quite natural to use LOTOS to specify
other problems than OSI protocols.

(2) We can write some part of a given problem by both
data type definitions and process ones. We need some

criteria to use data types and processes. This is a
tradeoff between data types and processes.

(3) In our case, we use the Library problem to exemplify
the data type definition facilities in LOTOS, and the Lift
problem to the process definitions. We think these two
problems are typical ones to test the two distinct abilities
of such languages as LOTOS.

(4) LOTOS explicitly specifies the communication
channels between processes. On the other hand, CSP
does not. So, we can trace the structure of process
communication in LOTOS easier than CSP, although
LOTOS text becomes longer than CSP ones.

(5) The distinction of using between gates and attributes
is also a tradeoff problem.. We can communicate via
only one gate if we prepare a lot of attributes on that
gate. But if we prepare many gates, then we can reduce
attribute patterns. We need some standard discipline of
using these two means.

5. Conclusions

We can say that the parallelism should be explicitly
expressed by parallel operators. But this parallel
definition part should be in a specification as little as
possible, because it is very hard to comprehend the
meaning of the parallelism if there exist unnecessary
process definitions.

This means the writer of the specification should localize
the parallelism in a given problem. This is a tradeoff
between abstract data type definitions and parallel
process behavior expressions.

In case of the Library problem, most parts of the
specification are data type definitions. The main data
type is a queue for the library book data base. Most
operations like add a book to the data base or search by
author are realized as operators defined in a data type.
The only parallel behavior is for "Staff" process and
"Borrower" process. These two processed should be
independent.

In case of the Lift problem, there should be several
processes which are essentially in parallel. The main
part of data type definition are request queues from
floors of lifts. Each process dedicated to each lift looks
around these queues and decides its direction to move.
In LOTOS, there are "standard" techniques to create
actual processes from some process template. When
communicating to processes by different commands,
there are two alternatives: first one is to prepare many
gates corresponding to each command,; the other one is to
prepare many attributes on one gate. This is also
tradeoffs between number of gates and attributes.

Although we did not state in the Lift problem, we used
>> operators for sequencing. We are able to rewrite
these processes by a data type if necessary. These >>
constructs should not be used frequently. We also used
[> operator and internal event symbol i to specify the
emergency behavior in the Lift system. We think these
constructs are much useful. In the case of CSP, there are
no such "exception handling operators".

We wish to point out several requirements for LOTOS
which are found during our experiments. Strictly
speaking, our data type definitions presented in the
previous sections are not legal, because we suppose that
LOTOS satisfies the following requirements.

(1)We wish to define a renamed type even when it
inherits two or more other data types. For example, the
following specification is illegal in the current LOTOS
definition[3]:

type A is B,C renamedby
sortnames X for Y
opnnames W for 2
endtype

(2)We wish to add sorts or opns to a renamed type. For
example, the following specification is illegal in the
current LOTOS.

type A is B renamedby
‘sortnames X for Y
opnames W for 2
sort S
opn O: X -> §
endtype

(3)We wish to use both actualize and rename in the same
data type definition.

Acknowledgement

The authors thank Dr. A. Tojo, the director of the
computer science division of Electrotechnical
Laboratory, for his encouraging us to carry out the
present study. They are also indebted to Mr. K.Okada
for his helpful discussions. Mr.A.Nakagawa carefully
read this manuscript and corrected errors.

References :

[1]1Problem Set for the Fourth International Workshop
on Software Specification and Design, IEEE, Proc. of
Fourth International Workshop on Software
Specification and Design, pp.ix-x, April 1987.

[2IM.D. Schwartz and N.M. Delisle, Specifying a lift
control system with CSP, ibid, pp.21-27.

[3)ISO/DIS 8807, Information processing systems -
Open systems interconnection - LOTOS - A formal
description technique based on the temporal behaviour.
[4]ISO/IEC DTR 9571, Information processing systems
- Open systems interconnection - LOTOS Description of
the Session Service - Type 2.

[SIISO/IEC DTR 9572, Information processing systems
- Open systems interconnection - LOTOS Description of
the Session Protocol - Type 2.

[6]ISO/IEC JTC1/SC21/WG1 N556, Formal description
of a Transport protocol in LOTOS for the ISO/CCITT
Guidelines on the application of Estelle, LOTOS and
SDL.

[7]Robin Milner, A Calculus of Communicating
Systems, Lecture Notes in Computer Science, 92,
Springer Verlag, 1980.

[81Software Environment for Design of Open Distributed
Systems, HIPPO-LOTOS simulator, the University of
Twente, The Netherlands. '
[9]K.Futatsugi, J.Goguen, J.-P.Jouannaud, and
J.Meseguer, Principles of OBJ2, Proc. of 1985
Symposium of Principles of Programming Languages,
ACM, pp.52-66, 1985.

[10]Special Issue on Tools for Computer
Communication Systems, 1IEEE Trans. Software
Engineering, Vol.14, No.3, March 1988.

[11]JISO/IEC JTC1/SC21/WG1 N549, Graphics syntax
for LOTOS.

[12]3.M. Wing, A study of 12 specifications of the
library problem, IEEE Software, pp.66-76, July 1988.

