
Analysis of Embedded System’s Functional
Requirement using BERT-based Name Entity

Recognition for Extracting IO Entities

MAN YIU CHOW 1,a)

Received: March 25, 2022, Revised: July 8, 2022,

Accepted: September 20, 2022

 Abstract: The functional testing specification is usually designed based on the IO entities’ recognition from the em-

bedded system’s functional requirement sentences. However, it is hard for the software testing engineers to ably rec-

ognize the appropriate IO entities from the functional requirement sentences without clearly indicated entities and

much experience with the domain knowledge. The conventional rule-based methods of extracting IO entities are in-

applicable when the requirement sentences drafted by humans become too semantically complex. Even though all the

sentences keep aligned with the structure, it is still infeasible to manually hard-code each rule when those rules

change from time to time without any explicit writing standard. With the successful application of artificial intelligent

techniques in natural language processing (NLP), we propose a method that intelligently solves the issue of the enti-

ties recognition by using BERT (Bidirectional Encoder Representations from Transformers) based named entity rec-

ognition (NER) which is the technique of NLP to recognize the phrases having similar attributes in semantics. In this

paper, we specifically focus on the issue of IO entities’ recognition in the embedded systems that implement the in-

verter control function such as elevator and hybrid hydraulic excavator systems. Our evaluation result demonstrates

that the best model variant fine-tuned on 829 sentences achieves more than 80% F-measure in recognizing the IO en-

tities, and the model can provide applicable information for the improvement of industrial productivity in the target

industries. Our contribution of this paper is to provide insight into the case whether the IO entities in the target sys-

tem manages to be interpreted well by exploiting the BERT model with the sole reliance on the small size of exem-

plary IO entities data and three existing model variants pre-trained on large corpus open datasets with general lan-

guage knowledge.

 Keywords: software requirement, named entity recognition, BERT, NLP, IO entities

1.　 Introduction

To ensure high software operation quality of embedded sys-

tems, especially of which implements the inverter control func-

tion such as elevator and hybrid hydraulic excavators system, the

functional requirement sentences of those software designs are

always provided by different software developers such that the

software testing engineer can verify the corresponding software

codes and designs for their performance satisfaction based on

the sentences of those given requirements to maintain a good

quality of the software architecture and operation. However, one

of the big challenges for software testing engineers is to recog-

nize the target IO entities accurately and swiftly from the func-

tional requirement sentences with different writing styles in nat-

ural language. Those entities are usually not clearly written, and

it requires intelligent semantic analysis for the IO entities’ recog-

nition.

Even though there are other researches on crafting the stan-

dard template of writing elicit requirements such as Easy ap-

proach to requirements syntax (EARs) [1] and specific represen-

tation template [2] to improve the efficiency and accuracy of

those functional requirement sentences, different software devel-

opers could still have changed writing standard to adapt the

complexity of some exceptional requirement sentences and

might not be able to follow the design writing rules such as

“If...Then...”. From the perspective of software developers, the

conciseness and semantics of the sentences are far more import-

ant than the compliance and the quality of those standard writing

formats when they solely consider efficient communication with

software testing engineers.

Due to the varying writing styles, the software testing engi-

neers might count on their experience but not simply sentence

1 Service Systems Innovation Center – DX Engineering Research De-
partment, Hitachi Ltd. Research and Development Group, Yokohama,
Kanagawa 244–0817, Japan

a) manyiu.chow.dv@hitachi.com

© 2023 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing　Vol.31

structure to pinpoint the target IO entities correctly during the

analysis of the software functional requirements. Their experi-

ences are not usually standardized as the decisions of recogniz-

ing the target IO entities from software testing engineers are

slightly different from each other due to their divisive working

backgrounds. This further takes more costly man-hours to ensure

the quality of the reviewing process. For this reason, it is more

practical to exploit an automation program for making swift, re-

liable, and uniform recognition based on the underlying design

rules for better consistency to assist software testing engineers

while extracting the IO entities from natural language’s function-

al requirement sentences. However, it is impossible to create

such kind of automation program merely on a basis of a stagger-

ing number of rules from diverse templates (E.g., EARs) as well

as exceptional cases due to the special wordings and writing

standards as the rule-based method could barely understand the

complicated IO entities’ relation based on the prerequisite do-

main knowledge in a semantic way.

With the existence of more advanced Artificial intelligent

techniques and its past successful applications in the Natural

language processing (NLP) field, we decided to utilize deep

learning based NER (Named Entities Recognition) to intelligent-

ly extract target IO entities in the natural language form func-

tional requirement sentence when its deep learning-based tech-

nique has been recently proven for the exceptional abilities to

understand natural language and complex relation in the sen-

tences. In general, NER is one of those prominent NLP methods

to extract a phrase that clearly identifies one item from a set of

other items in a sentence that have similar attributes. [3] There

are several approaches to achieve NER in the past including dic-

tionary-based NER and conventional machine learning-based

NER. [4] The former one requires an exhaustive dictionary list

and is easily broken when a new word or unseen structure does

not match any item on the prepared list. The latter one such as

SVM (Support vector machine) CRF (conditional random

field) [5] is only able to deal with the common cases with simple

structure learned from training data as those methods only man-

age to capture sallow dimension features. For this reason, we

only focus on the contemporary deep learning-based NER in this

paper.

Choosing the contemporary deep learning-based NER with

the lack of a large corpus of embedded system’s technical sen-

tences for training model, we experimented on three common

variants of the state-of-the-art BERT model pre-trained with

public open datasets which consist of the data from BookCorpus

with 800 million words and the data from English Wikipedia

with 2500 million words. [6] We chose the BERT model because

it has been demonstrated to attain more than 90% F-measure

performance in both CoNLL03 and OntoNotes5.0 benchmark

for NER. [5] In other words, our paper contributes the insight

whether the three target variants of the BERT model pre-trained

with the data of general English knowledge can be fine-tuned

with a small size of dataset related to the functional requirement

of an embedded system implemented with inverter control func-

tion and therefore let the fine-tuned models provide accurate

prediction of IO entities’ recognition for consistent embedded

system’s functional requirement analysis.

2.　 Problem Formulation

2.1　 The Definition of Target IO Entities for the Analysis

In the IO entities of our functional requirement sentences, we

mainly target 3 types of system’s IO entities, “input”, “output”,
and “condition” in the requirement. The overview of the relation

of these three components in the embedded system’s functional

requirement is illustrated in the following diagram.

In the requirement shown in Figure 1, all the components

have dependent relations in which the input component proceeds

to the output component through passing the condition compo-

nent. When the figure elucidates all the components in the re-

quirement, those components become indirect and indistinct in

natural language sentences.

Due to such characteristics in natural language sentences, a

rule-based method is therefore incapable of capturing such rela-

tions because there is no straightforward rule by relying on stan-

dard words or specific grammar structures to extract the rela-

tions. Without the standard writing template, the rule-based

extraction method is also unevaluable and unachievable as the

developer requires to manually address thousands of exceptional

cases and writing styles.

Even though a deep learning-based NER model can automati-

cally figure out the IO entities from those natural language sen-

tences for us, the manual preparation of the training dataset is

still essential ahead of inference to guide the model for molding

the above underlying semantic rules. To capture those IO entities

along with those relations in the requirement sentences for the

annotation of training data, the problem of setting up clear defi-

nitions of each component is significant to figure out the proper

annotation rule in a bid to ensure good labelling consistency and

Fig. 1　 The overview of the relation of these three components in embed-

ded system’s functional requirement.

Electronic Preprint for Journal of Information Processing　Vol.31

© 2023 Information Processing Society of Japan

good model generalization during the model training, and we ad-

dressed this issue in section 4 of this paper.

2.2　 The Selection of NLP Model for NER Task

To select the most appropriate NLP model for the NER task,

we considered two factors. The first one is the ability of good

model generalization without the preparation of overwhelmingly

large training datasets when it is expensive to manually label the

data. The second factor is the capability of learning complicated

relations for each entity when the relations are abstract in se-

mantics because the relations of IO entities are not always ob-

servable by relying on the simple sentence structure. Especially

in our case, the optimal NER method should be able to recognize

the underlying semantics relations of inputs, outputs and passing

conditions based on the software functional requirements even if

the writing style and sentence structure change on a case-by-case

basis. This implies that our model should be able to learn the ab-

stract concept of the IO entities’ relations from the general En-

glish knowledge and our limited size of available training dataset

due to the insufficient data variety from our products.

Conventionally, most researchers use CRF-based NER meth-

ods which are the popular machine learning-based NER to

achieve NER tasks. Those methods have been successfully ap-

plied to different applications such as biomedical text, tweets,

and chemical text. [4] Despite its popularity and successes, sole-

ly relying on original CRF based methods without additional

modification to the model structure are still unable to capture the

underlying complicated features with only little available train-

ing datasets due to the lack of the efficient ability to deal with

unknown tokens and the poor support of transfer learning from

other trained models. [7], [8]

For these reasons, a deep learning-based NER model is fo-

cused on in our paper when it was proven to be able to capture

underlying features and to support transfer learning. Among

deep learning-based NER models, transformer-based BERT (Bi-

directional Encoder Representations from Transformers) has

been proven to achieve state-of-the-art performance [7], [9]

compared to other types of neural network models in not only

NER task but also different NLP tasks including SQuAD2.0

(Question answering). [6]

Our problems in this paper are how different variants of BERT

models perform and how we handle the fine-tuning with our

limited size of available training dataset for the application of IO

entities’ recognition in our functional requirement’s analysis. The

details of the model as our solution are elaborated in section 3 of

this paper.

3.　 BERT based NER for Functional Require-
ments

This section presents the theory of BERT based NER and the

details of solving the recognition of target IO entities in the em-

bedded system’s functional requirements using BERT. In section

3.1, the details of the BERT structure and the variant of its pre-

trained model are illustrated for the significance of solving the

recognition problem. In section 3.2, The fine-tuning step for the

NER task and its additional BERT structure are explained in de-

tail.

3.1　 BERT Model and its Variants of Pre-trained Model

The base BERT exploits the concept of transformer which

highlights the reliance on attention mechanism to generalize lan-

guage knowledge well in most of the NLP tasks without the

need for recurrence and convolutions. [10] The attention mecha-

nism succeeds when it manages to efficiently learn long-range

dependencies faster due to the shorter paths between the input

and output sequences compared to other types of neural network

layers such as convolutional or recurrent layers. In BERT, it only

takes the transformer encoder part which has the bidirectional

self-attention structure, and the part is originally for understand-

ing the language before feeding into the decoder part in the

whole transformer model.

As shown in figure 2, the model consists of 12 layers trans-

former block with 768 hidden sizes and 12 bidirectional self-at-

tention heads, and the number of the total parameters is around

110 million. [6] To enable the model to understand the sequential

order of tokens, the tokens input will be processed into three em-

beddings inside the first representation layer of BERT before the

transformer encoder. The three embeddings include the corre-

sponding token for the target words, the segment for the differ-

entiation of the belonging between two input sentences based on

the token [SEP], and position embeddings for sequential order of

words in a sentence.

To acquire the general language representation, the BERT

Fig. 2　The BERT model during pre-training step.

© 2023 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing　Vol.31

model has to be pre-trained with a large language corpus to learn

the target language’s features. There are two essential tasks in

the pre-training procedure, the Masked language model (MLM)

and Next sentence prediction (NSP). [6] For the input of MLM

during pre-training, some of the tokens in the sentences are

masked with the token [MASK] by random and then the model

will be trained by feeding the original word vectors output in the

masked token position. For the input of NSP, two sets of tokens,

{Token11,...,Token1N} and {Token21,...,Token2M}, are formed

respectively from two sentences and separated by the token

[SEP]. The model will thereby be trained by feeding the first

output word C to indicate whether those two sentences are rele-

vant to each other.

In the target pre-trained models for functional requirement

analysis in this paper, we chose three common variants and spe-

cifically targeted (1) Cased BASE model which is pre-trained

with case-sensitive corpus, (2) Uncased BASE model which is

pre-trained with lowercased corpus and (3) MNLI (Multi-Genre

Natural Language) which is further fine-tuned with The Multi-

Genre Natural Language Inference dataset [11] on the uncased

BASE model. For the corpus mentioned above, we follow the

pre-training data from the original paper [6] by using BookCor-

pus with 800 million words and English Wikipedia with 2500

million words. The significant difference between these models

is the way to handle the pre-training process. Since the perfor-

mance of the fine-tuned NER models varies due to different pre-

trained model, the paper provides an insight whether the BERT

model pre-trained on general English corpus is suitable and

which variant of pretrained model is the most suitable for the

analysis of functional requirement in embedded system with

many different technical terminologies in case the large corpus

of technical document training data is not available.

3.2　 Fine-tuning BERT to NER Task

After pre-training the BERT to acquire general language

knowledge, the model is then prepared to be fine-tuned to con-

duct NER task. To turn the pre-trained model into the NER mod-

el, the last layer of the BERT is converted to a token classifier

which is shown in Figure 3 below.

Specifically, we treat all the input tokens as if they are the

words from a single sentence and there is no longer any token

[SEP] to separate two sentences. In other words, our input can

be more than one sentence but there is no special delimiter to

separate those sentences.

For each corresponding output node Labeli of the model, it is

responsible for the label classification of the token Tokeni in the

corresponding order. Depending on the number of label types,

the size of the label vector in each output node would be differ-

ent. In the paper, we adopted BIO (Beginning, inside, and out-

side) labelling scheme when the scheme is conventionally popu-

lar for the NER labelling task, each label vector Labeli in the

node for Tokeni has 8 classifications including “O” for tokens

without any label, “B-input” and “I-input” for input label,

“B-output” and “I-output for output label, “B-condition” and

“I-condition” for condition label and “PAD” for padding tokens

which are empty.

4.　 Model Fine-tuning and Dataset Preparations

In this section, the fine-tuning dataset preparation with the

clear definition of the three target components for functional re-

quirements and the implementation of model fine-tuning in the

IO entities’ recognition for functional requirements are detailed

in section 4.1 and section 4.2 respectively.

4.1　 Fine-tuning Dataset Preparation

To prepare fine-tuning dataset, we annotated our data for the

AI model to understand the semantic feature of each target label

for the IO entities in functional requirement. Meanwhile, we

have set up the annotation rules to address the following three

data quality issues during the annotation. Addressing the issues

helps us achieve higher accuracy especially when only a few

data are available.

The first data quality issue is the consistency of the annotation

methods from different annotators as we should avoid any dou-

ble standard for the definitions of the same labels. For example,

the consideration of whether the output element should include

the action verb is important for the model to accurately recog-

nize the coverage of the output element in any condition. Sup-

posed that action verb should be treated as an output element,

the model could hardly converge to such annotating way if some

of the annotated sentences do not follow the same rule. In other

words, high semantic consistency for the annotation can provide

good model generalization and vice versa. In the paper, the defi-

nitions of all target components have been listed in the Table 1.

Fig. 3　The BERT model during the fine-tuning step for NER task.

Electronic Preprint for Journal of Information Processing　Vol.31

© 2023 Information Processing Society of Japan

The second data quality issue is the undesirable training data

noise, and the annotation rule should help annotators spot them

out for data cleansing. In our preparation, we specifically remove

the sentences under drafting such as the sentence with only the

word “TBD” or the sentence with only a website address or a

file path available. Additionally, we also removed the over-

whelming long sentence with undetermined relations due to the

special project rule. Training the model with those undesirable

sentences usually results in lower detection accuracy because

those data are usually sparse with only the specific type of label

in the whole sentence, and it evens out the trained model

weights.

The third data quality issue is to diversify our dataset with dif-

ferent sentence structures to capture the general semantics fea-

ture of each target component instead of targeting the positions

of the words based on the specific keyword or sentence structure.

For example, X components in these 2 sentences “... by using

X” and “... while using X” could be input and condition respec-

tively.

In our dataset, we have annotated 873 records in total with

“input” labels for 3964 tokens, “output” labels for 14985 tokens,

and “condition” labels for 9927 tokens. The 829 records are for

model fine-tuning and the rest of the 44 records are for perfor-

mance evaluation.

4.2　 The Implementation of Model Fine-tuning

Regarding fine-tuning model configuration, we trained three

models with Adam optimizer with weight decay for 10 epochs.

According to the fine-tuning procedure in the original BERT

model, the author conducted 3 epochs of fine-tuning on each of

The General Language Understanding Evaluation (GLUE) data-

sets respective. Each dataset has more than 2000 records. Since

we have only around 800 fine-tuning records, the fine-tuning ep-

och increase to avoid insufficient converging to optimal loss. For

the rest of the hyperparameters, we selected 5e-5 as our learning

rate and 2 as our batch size. We chose a smaller batch size as a

small batch size tends to have the effect of stochastic gradient

descent and achieve better model regularization.

Figure 4 shows the average training loss of 3 targeted model

variants, the Cased BERT model, the Uncased BERT model and

the MNLI BERT model. Among these three models, the Cased

BERT model suffers the least average training loss after 10 ep-

ochs.

For the input token of the fine-tuned NER model, the maxi-

mum token for each sentence is 100. In other words, the model

will pad the sentence with the token “PAD” if it has less than

100 tokens and the redundant tokens will also be discarded when

the sentence has more than 100 tokens.

5.　 Performance Evaluation

5.1　 Evaluation Method

In the paper, we adopted the F1-measure shown in the follow-

ing formula as our performance indicator for each label. It re-

flects a harmonic mean of precision and recall. Our target label

includes the “Input” label, the “Output” label, the “Condition”
label and “O” for a token without any label.

 F1−measure =
2 ∗ Precision ∗Recall

Precision+Recall
 (1)

It is used to measure a model’s prediction accuracy because it

is not comprehensive to focus only on either precision or recall.

There is always a prediction problem if only one of them

achieves a higher value.

5.2　 Evaluation Environment

To build BERT-based NER. we created our BERT model us-

ing HuggingFace library [12] with a fully connected layer on top

for token classification. For the three variants of pre-trained

BERT models, they were pretrained and provided by the open-

source community since pre-training model with a large corpus

requires costly computational resources. In our experiment, we

conducted fine-tuning on three variants of BERT models.

Our fine-tuning step was carried out on the server with

NVIDIA V100 32 GB GPU memory and 64 GB RAM and we

did not run out of memory during fine-tuning. Our dataset has

873 records in total with “input” labels for 3964 tokens, “out-

put” labels for 14985 tokens, and “condition” labels for 9927 to-

Table 1　The definition of each label.

Fig. 4　The average training loss of three model variants for 10 epochs.

© 2023 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing　Vol.31

kens. We fine-tunned the BERT model with 2 batch sizes and

Adam optimizer with weight decay for 10 epochs using 829 data

records in total and the rest of the 44 data records are for perfor-

mance evaluation.

5.3　 Results

In our evaluation, we have tested 44 records that contain 95

functional requirement sentences with 2257 tokens in total.

In our result of the Cased BERT model illustrated in Table 2,

it shows that all the labels achieve more than 80% F1-measure.

The “Output” label achieves the highest F1-measure score with

92% whereas the “Input” label achieves the lowest F1-measure

score with 82% when the precision is relatively low with 74%

compared to the rest of the labels.

In our result of the Uncased BERT model illustrated in Table

3, it shows that all the labels achieve more than 80% F1-mea-

sure. The “Output” label achieves the highest F1-measure score

with 93% whereas the “Input” label achieves the lowest

F1-measure score with 81% when the precision is relatively low

with 76% compared to the rest of the labels. The overall perfor-

mance of this model is similar to that of the cased BERT model.

In our result of the MNLI BERT model illustrated in Table 4,

it shows that most of the labels achieve around 70% F1-measure.

The “Output” label achieves the highest F1-measure score with

86% whereas the “Input” label achieves the lowest F1-measure

score with 65% when the recall is relatively low with 62% com-

pared to the rest of the labels. The overall performance of this

model variant is worse than the rest of the other BERT model

variants.

From the comparison of three variants of pre-trained model

shown in Figure 5, the MNLI model suffers the worst perfor-

mance among the three variants whereas the performance of the

rest of the two models is similarly good with more than 80% av-

erage F1-measure for all labels. Furthermore, we found that

“output” labels are well recognized, but this is not the case for

“input” labels in all three models since most of the common

functional requirements in our fine-tuning dataset contain “out-

put” elements with 14985 labels in total, but this is not the case

for “input” elements with 3964 labels in total.

5.4　 Exemplary Results and Analysis

The 6 representative examples are illustrated to explain the

component recognition ability of three models and all those sen-

tences were chosen based on the common structures in most

testing data sentences. In the prediction results of our examples,

we highlighted “input” labels in pale green, “output” labels in

pale orange and “condition” labels in yellow.

The functional requirement sentence in example 1 contains

the output component and the condition component. Both the

Cased model and the Uncased model are able to recognize all

the components whereas the MNLI model fails to target the ac-

tion words “determinate” as an “output” token.

The functional requirement sentence in example 2 contains

Table 2　Cased BERT model.

Table 3　Uncased BERT model.

Table 4　MNLI BERT model.

Fig. 5　F-measure comparison between three models.

Table 5　Example 1.

Electronic Preprint for Journal of Information Processing　Vol.31

© 2023 Information Processing Society of Japan

output component and input component. Both the Cased model

and the Uncased model are able to recognize all the components

whereas the MNLI model fails to target the time cycle as an “in-

put” token.

The functional requirement sentence in example 3 contains

the output component and the input component. All the models

can recognize all the components. This example demonstrates

the model’s ability to understand the target input and the target

output based on the semantics of the sentence.

The functional requirement sentence in example 4 contains

condition component, output component and input component.

All the models managed to recognize all the components. The

complicated condition pattern in the example can be captured

successfully by the models and it also shows that the models can

recognize the long output sentence.

The functional requirement sentence in example 5 contains

the output component and the input component. All the models

managed to recognize all the components. Similar to example 4,

the complicated output pattern extended in the example can be

captured successfully by the models and it also shows that the

models can recognize the long output sentence.

The functional requirement sentence in example 6 contains

the output component and the input component. Cased and Un-

cased models are able to recognize all the components whereas

the MNLI model mistook some of the “input” components as

“output”. The models show the model’s ability to predict the IO

entities in two functional requirements at the same time.

Overall, our 6 representative examples illustrate the ability of

our three trained models on recognizing the IO entities in the

functional requirement sentences with different writing styles. It

illustrates how practical our model could be applied to industrial

service for speeding up the analysis. Especially for example 4

and example 5, the writing styles of those sentences are more

complicated than the rest with the extra information after the

sentence.

5.5　 Discussion and Impacts of Our Research

5.5.1　 Consideration of Large BERT Model

While we only illustrated the base BERT model in this paper,

we also experimented with the large BERT model which has

more transformer encoder layers as the official paper demon-

strated the better performance of the large BERT model. Howev-

er, we only had less than 1000 functional requirement records,

and the small size of the dataset adversely affects the training

stability in a large model including optimization difficulties in

Table 6　Example 2. Table 8　Example 4.

Table 7　Example 3.

© 2023 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing　Vol.31

early training and vanishing gradients with only a few datasets

available. [13], [14] For this reason, we focus on the variants of

the pre-trained BERT model in this paper and the stability of a

small dataset trained on a large model will be one of the direc-

tions for performance improvement in the future.

5.5.2　 Improvement of Data Labels

To ensure better performance of the model, we should balance

the variety of data labels without superseding specific types of

our labels. For example, only relatively few sentences in our

fine-tuning datasets have “input” components compared to other

types of components due to the limitation of available data and

our result shows that this deteriorates the performance of recog-

nizing the corresponding label. In the future, we will spend more

resources on ensuring the label variety and further advance the

training data generation technique for controlling the number of

target types of labels by using different semi-supervised learning

techniques such as GAN-BERT. [15]

On the other hand, our current NER trained model can only

handle either condition, input, or output relation for each token

in the same requirement sentence. There are few exceptional

cases for the same component with multiple relations. Figure 6

illustrates the exceptional case that the same component “B” in

the functional requirements could have two different input and

output relations to component “A” and component “C” respec-

tively at the same time. Since it means that there are some tokens

having multiple relations simultaneously, we will further exploit

the technique of nested NER [18] in the future to handle the IO

entities which have the complex relationships with multiple la-

bels for the same token at the same time.

5.5.3　 Consideration of Pretraining Procedure Improvement

for BERT Model

Although this paper concentrated on the application of the

model pre-trained on general language knowledge to inverter

control function in embedded systems due to the limitation of

available technical documents, we could pre-train the BERT or

other similar NLP based model with the corpus from the require-

ment documents for the inverter control function in embedded

systems as long as the resources are available in the future.

Pre-training the model with the corpus in a specific target do-

main enables the model to extract the deeper underlying features

of domain knowledge and therefore improve the fine-tuning ac-

curacy.

A similar concept of pretraining model with the data in a spe-

cific domain has already been successfully applied in the medi-

cal field although their problem is not the issue of recognizing

IO entities presented in this paper. [16], [17] In medical NLP ap-

plication, the base model was retrained with the corpses of med-

ical articles to improve the accuracy of medical-related tasks

such as finding out the symptom and corresponding disease.

5.5.4　 The Model for Other Relevant Functional Require-

ments

Although the paper only spotlighted the application in the

functional requirements of the embedded systems implemented

with inverter control function, our experiment result implies the

Table 9　Example 5. Table 10　Example 6.

Fig. 6　The example of the same component with multiple relations.

Electronic Preprint for Journal of Information Processing　Vol.31

© 2023 Information Processing Society of Japan

model pre-trained on general language knowledge is ably ap-

plied to a software-related application without critical perfor-

mance issues and biases. In the future, we will also expand the

application in other relevant functional requirements but not only

embedded systems with inverter control functions.

5.5.5　 The Improvement of Industrial Software Testing Pro-

cessing

For such kind of IO entities’ analysis in requirement sentenc-

es, software testing engineers always count on their tacit knowl-

edge as they should comprehend the meanings of the require-

ment sentences to find out the target entities. Therefore, the

junior engineers or the engineers from dissimilar working back-

grounds could have different analytical results with the issue of

double-standard and we need to squander additional time for en-

suring the analysis quality. Figure 7 illustrates the process with-

out AI model involvement.

Even though our method is yet to be able to provide a com-

pletely accurate result when there is no explicitly absolute cor-

rect annotation in certain circumstances in which the entities can

have more than one identity at the same time, our tool can pro-

vide much standardized and consistent analysis for the reference

of IO entities recognition based on high-quality annotation data

such that the AI model ably captures the most general and ac-

ceptable semantic concept without the issue of double-standard.

As shown in Figure 8, the software testing engineers could skip

the first review by relying on our model and therefore shorten

much reviewing time by settling the double-standard issue and

double-checking the analysis of IO entities from others with

highly efficient production.

Additionally, our BERT model can ensure the readability of

the requirement sentences by determining whether the target IO

entities can be able to be recognized by the AI model. Specifi-

cally, we have set the criteria shown in Table 11 to determine

whether the entities are able to be extracted or not from the re-

quirement sentences.

Since the requirement sentences are all prepared in natural

language by humans, our BERT-based NER model shown in

Figure 9 can be able to filtrate and recheck the sentences based

on the information of unrecognizable IO entities with our criteria

such that it could drastically relieve the reviewing process of

problematic sentences. This also implies that there should be no

more lengthy correction process from requirement sentence

writers during reviewing and creating test cases from software

testing engineers as they have been resolved in advance with the

assistance of BERT based NER model.

6.　 Related Work

Conventionally, most of the proposed approaches which tackle

the accurate analysis of functional requirements are to design the

applicable procedure and rules for writing those requirement

sentences to efficiently convey the precise information. [1], [2]

However, the methods only guided software testing engineers for

effective communication but did not automate the whole analysis

procedure. In other words, the methods still heavily involved hu-

man intervention which is usually prone to grammatical mistakes

and relatively expensive compared to the AI automation method

proposed in this paper.

In the recent literature of software requirement analysis using

AI, most of them are either classifying the whole requirement

sentences or simply recognizing the entities without complicated

relation of IO entities but they did not address the complicated

IO relation issue presented in this paper. [19] utilized the tech-

nique of NER with both machine learning and deep learning

method to recognize simple software-related entities in software

requirement specification (SRS). [20], [21] classifies the appli-

cation related reviews requirement into given categories with the

BERT model for apps performance analysis. The result

from [19] further shows that BERT outperformed the rest of ma-

chine learning-based approaches.

Fig. 7　the original reviewing process without AI model.

Fig. 8　New reviewing process with AI model involvement.

Table 11　The judgement about NER model result.

Fig. 9　The improvement of requirement readability.

© 2023 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing　Vol.31

7.　 Conclusion

In this paper, our method managed to solve the issue of the IO

entities’ recognition in the functional requirement sentence dedi-

cated to the inverter control function of embedded systems by

fine-tuning the token classification in state-of-the-art BERT

model with the small size of exemplary data to conduct the tech-

nique of Named entity recognition (NER) and find out the target

IO entities from the sequence of tokens.

In our evaluation, we fine-tuned three variants of the BERT

models including Cased, Uncased, and MNLI with 829 records

and we tested the performance of those three variants of the

model with 44 records which consist of 95 functional require-

ment sentences. From the result. We successfully demonstrated

that the IO entities in embedded systems with inverter control

function can be interpreted well with the best model achieving

around 80% F-measure for all labels. Specifically, the cased and

uncased variants of the BERT model have the similarly best per-

formance with more than 80% F-measure for all labels whereas

the MNLI variant has the worst performance with less than 80%

F-measure for some labels.

This result further provides insight into the fact that the cased

and uncased variants of the models pre-trained on general lan-

guage knowledge are beneficial to the analysis of inverter control

function in the embedded system by only preparing small size of

fine-tuning datasets for the knowledge of IO entities in the tar-

geted type of embedded systems when the documentation of

those embedded systems for pre-training model is not available.

Furthermore, the result proves the practicality of applying the

NLP model to the targeting industries and therefore improves

the industrial productivity by automating the reviewing proce-

dures of embedded system’s functional requirements and reduc-

ing the man-hour cost of analyzing the functional requirement

sentences.

Reference

[1] Mavin, A. and Wilkinson, P.: A. Harwood and M. Novak, Easy
Approach to Requirements Syntax (EARS), 2009 17th IEEE
International Requirements Engineering Conference, pp.317–
322 (2009).

[2] Verma, R. P. and Beg, M. R.: Representation of Knowledge
from Software Requirements Expressed in Natural Language,
2013 6th International Conference on Emerging Trends in En-
gineering and Technology, pp.154–158 (2013).

[3] Nouvel, D. et al.: J. Wiley & Sons, Appendix 5: Named Enti-
ties: Current Definitions, Named Entities for Computational
Linguistics, pp.153–156 (2016).

[4] Li, J., Sun, A., Han, J. and Li, C.: A Survey on Deep Learning
for Named Entity Recognition, in IEEE Transactions on
Knowledge and Data Engineering, Vol.34, No.1, pp.50–70
(2022).

[5] Sutton, C. and McCallum, A.: An Introduction to Conditional

Random Fields, now (2012).
[6] J., Devlin, et al. BERT: Pre-Training of Deep Bidirectional

Transformers for Language Understanding. ArXiv: 1810.04805
[Cs], (2019).

[7] Li, J., Sun, A., Han, J. and Li, C.: A Survey on Deep Learning
for Named Entity Recognition, in IEEE Transactions on
Knowledge and Data Engineering, Vol.34, No.1, pp.50–70
(2022).

[8] Sutton, C. and McCallum, A.: Composition of conditional ran-
dom fields for transfer learning, In Proc. of the conference on
Human Language Technology and Empirical Methods in Natu-
ral Language Processing (HLT ’05). Association for Computa-
tional Linguistics, USA, pp.748–754 (2005).

[9] Gonz’alez-Carvajal, S. & Garrido-Merch’an, E. C.: Comparing
BERT against traditional machine learning text classification.
ArXiv, abs/2005.13012 (2020).

[10] A., Vaswani, et al.: Attention Is All You Need, Advances in
Neural Information Processing Systems, Vol.30, Curran Asso-
ciates, Inc., Neural Information Processing Systems (2017).

[11] A., Williams, et al.: A Broad-Coverage Challenge Corpus for
Sentence Understanding through Inference, Proc. of the 2018
Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technolo-
gies, Vol.1 (Long Papers), pp.1112–22 (2018).

[12] Wolf, T., Debut, L., Sanh, V., C., C., Julien, A., Delangue, P.,
Moi, T., Cistac, R., Rault, M., Louf, J., Funtowicz, S., Davison,
P., Shleifer, Platen, von, Ma, C., Jernite, Y., Plu, J., Xu, C.,
Scao, T. L., Gugger, S., Drame, M., Lhoest, Q. and Rush, A.
M.: “HuggingFace’s Transformers: State-of-the-art Natural
Language Processing”, arXiv: 1910.03771, (2019)

[13] M., Mosbach, et al.: On the Stability of Fine-Tuning BERT:
Misconceptions, Explanations and Strong Baselines, openre-
view.net, (2020).

[14] T., Zhang, et al.: Revisiting Few-Sample BERT Fine-Tuning,
openreview.net (2020).

[15] Croce et al.: GAN-BERT: Generative Adversarial Learning for
Robust Text Classification with a Bunch of Labeled Examples,
ACL2020 (2020).

[16] T. Goino and T. Hamagami: Named Entity Recognition from
Medical Documents by Fine-Tuning BERT (2021).

[17] Rasmy, L., Xiang, Y., Xie and Z. et al.: Med-BERT: pretrained
contextualized embeddings on large-scale structured electronic
health records for disease prediction. npj Digit. Med. 4, 86
(2021).

[18] Li et al.: A Unified MRC Framework for Named Entity Recog-
nition, ACL 2020 (2020).

[19] Malik, G., Cevik, M., Khedr, Y., Parikh, D. and Başar, A.:
Named Entity Recognition on Software Requirements Specifi-
cation Documents, Proc. of the Canadian Conference on Artifi-
cial Intelligence. (2021).

[20] Yang, J., Dou, Y., Xu, X., Ma, Y. and Tan, Y.: A BERT and Top-
ic Model Based Approach to reviews Requirements Analysis,
International Symposium on Computational Intelligence and
Design (ISCID), 2021, pp.387–392 (2021).

[21] Hey, T., Keim, J., Koziolek, A. and Tichy, W. F., NoRBERT:
Transfer Learning for Requirements Classification, 2020 IEEE
28th International Requirements Engineering Conference (RE),
pp.169–179 (2020).

Electronic Preprint for Journal of Information Processing　Vol.31

© 2023 Information Processing Society of Japan

CHOW, MAN YIU received his Computer Sci-

ence (M.Sc.) degree from The Chinese Univer-

sity of Hong Kong, Hong Kong, in 2018 and

He joined Hitachi Ltd. as an assistant research-

er in the same year. He is currently working on

the research of AI-based requirement engineer-

ing improvement and obstacle detection for mobility systems in

the DX Engineering Research Department at Hitachi Ltd. His re-

search interests include Natural language processing, Sensor fu-

sion, Machine learning, Data science, and Pattern Recognition.

© 2023 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing　Vol.31

