
Estimating Joint Probability of Independently
Randomized Multi-dimensional Data

Hiroaki Kikuchi1,2,a) Josep Domingo-Ferrer2

Abstract: Randomization of multi-dimensional data has several issues. Applying randomization to each at-
tribute independently incurs an exponential grownup of possible values of composed domains that follows a
huge computational time and correlations among attributes may be lost. In this paper, we show that the
accurate estimation of joint probability distributions between attributes are feasible from the independently
randomized multidimensional data. We show a simple but general scheme that computers composed ran-
domization matrix and estimates the joint probabilities based on the inverse of randomization matrix. The
estimation accuracy is evaluated in a model that takes a number of users, a number of values of attribute, a
privacy budget and a correlation measure.
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1. Introduction

With widely spread of IoT devices, our daily activities

are scanned and monitored in our digital society. Highly

advanced smartphones keep scanning multi-dimensional vi-

tal data and help to suggest a healthy lifestyle. For example,

Shen et al. [2] proposed method to aggregate high dimen-

sional data to make better demand response for smart grid.

Saint-Maurice et al. [1] found that a greater number of steps

per day was significantly associated with a lower risk of all-

cause mortality in adults in the US. These data are useful

but often highly private data.

Local differential privacy (LDP) is a challenge for pri-

vate data analysis, where data is locally anonymized be-

fore sending to data controller who estimates the fre-

quency of responses accurately. Erlingsson et al. at

Google proposed a LDP algorithm, Randomized Aggregat-

able Privacy-Preserving Ordinal Response (RAPPOR)[12].

Google Chrome extension uses RAPPOR to collect Windows

process names and Chrome Homepages in privacy guaran-

teed manner.

Unfortunately, the curse of dimensionality does not allow

the LDP approach to apply to multi-dimensional data. If

we näıvely apply the randomization to every attribute inde-

pendently, it leads to low-quality estimation because of the

following reasons:

• (Exponential growing up domain) The number of val-

ues (categories) of the Cartesian product of multiple do-

mains grows exponentially. The analysis of aggregated

randomization matrix needs a high computational costs.
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• (Association loss) Independent randomization of at-

tributes violates the associations among attributes. The

randomized values tend to be distributed uniformly and

the highly associated pair of data may be hidden over

the aggregated domains.

• (Sparse domain) The possible combination of values in-

crease exponentially, while the number of individuals is

constant. Therefore, the dense of records becomes lower

with the increment of dimensions. The sparse random-

ized data incurs estimation accuracy loss.

To address the dimensionality issues, we propose a simple

but general method to estimate joint probability accurately.

Our proposed method, called RR-Ind-Joint, randomizes all

attributes of multi-dimensional data independently, aggre-

gates some randomization methods of subset of attributes

jointly into a single randomization matrix for which the joint

probability distributions are estimated. We show a sim-

ple way to compute the aggregated randomization matrix,

which conveys conditional probabilities from the domain of

original data to the randomized domain. The inverse of the

aggregated matrix allows to estimate the original joint prob-

ability from the randomized data.

Our proposed method has some advantages against the

existing schemes in terms of dimensionality issues. RR-Ind-

Joint is efficient in terms of computation cost. The combined

domains grows exponentially to the number of attributes m

to aggregate, while the complexity of matrix inversion is lin-

ear to m. We will show it in Section 3.2.2. Hence, it can

apply to high-dimensional data as far as a capacity allows.

RR-Ind-Joint is accurate in estimation of joint probabili-

ties. The randomizations of attributes are performed inde-

pendently, and hence the joint conditional probability can

be obtained by the product of probabilities. Hence, the ag-
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gregated multi-dimensional data retains the association of

attributes slightly, which can be recovered by the inverse

of aggregated randomization matrix. When we assume ob-

serving empirical probability in sufficient precision, the es-

timation error can be ignored. It estimates joint probability

distributions of the original multi-dimensional data regard-

less of the the strength of associations among attributes.

Observed frequencies of values may slightly vary depend-

ing on randomization probability, the number of values in

domains and the number of individuals. Hence, this causes

a small estimation error. The error decreases as the size of

survey increases and sufficient number of individuals par-

ticipate. In order to guarantee the utility loss in privacy

preservation, we propose a mathematical model with the

above parameters to identify the magnitude of estimation

error. We also conduct an experiment to verify our estima-

tion of error using a synthesized data.

RR-Ind-Joint estimates joint probability based on the in-

verse of aggregated randomization matrix. We prove that an

arbitrary number of dimensions is possible to be aggregated

in Corollary 1 and guarantee that the aggregated randomiza-

tion matrix is always non-singular in Section 3.2.2. Hence, it

apples high-dimensional data even if the combined domain

is sparse.

RR-Ind-Joint guarantees the differential privacy for spec-

ified privacy budget. Since attribute randomizations are

performed independently, the whole privacy budgets can be

simply given the sum of all budgets due to the sequential

compositional theorem of LDP [11].

Our contributions of this work are as follows:

• We propose a new LDP scheme RR-Ind-Joint that deals

with multi-dimensional data and estimates the joint

probability distribution from the observed frequencies

of the randomized data.

• We prove some useful properties of the proposed

schemes that can be applied to arbitrary number of

dimension, the estimation error does not depends on

the strength of the association of the original multi-

dimensional data.

• We show the experimental results using synthesized

data and the open data to evaluate the estimation loss

in terms of several parameters, the correlation among

attributes, the size of domain, and the number of indi-

viduals.

The rest of our paper is organized as follows. In Section 2,

we give some fundamental definitions and review some exist-

ing works related to the multi-dimensional anonymization.

Section 3 proposes our scheme, provides an algorithm for es-

timation. We also discuss the privacy and and the primary

factor of error of the estimation error. After dementing an

example of toy data, we report the experimental results us-

ing some synthesized and open data in Section 4 to verify

that our model for estimation error as claimed. In Section 5,

we conclude our study based on the proved theorem and the

experimental results.

Algorithm 1 Randomization RR(X)

1: xi ← input of party i for attribute X.

2: P ← a randomization matrix for attribute X.

3: for all Party i = 1, . . . , n do

4: yi ←
{

xi w.p. = puu, xi is u-th element
v w.p. = puv = q

5: end for

6: return the randomized response y1, . . . , yn.

2. Fundamental Definitions

2.1 Randomized Response

Definition 1 Let X be a set of d elements. A d × d

matrix of probabilities

P =


p11 · · · p1d

...
. . .

...

pd1 · · · pdd

 ,

is a randomization matrix ofX if and only if p11+· · ·+pdd =

1 and puv is a conditional probability of a randomized ele-

ment to be v given u of X i.e., puv = Pr(Y = v|X = u) for

all u, v ∈ {1, . . . , d}.
A randomized response (RR) is a randomized mechanism

that input X of d possible values a1, . . . , ad is randomized

to the response Y according to P . By Y = RRP (X), we de-

note an algorithm defined in Algorithm 1. The goal of RR

is to estimate the frequency of a of X, which can be given

the most likelihood estimation as fY =a/n−q
p−q , where n is the

number of responders.

More correctly, letting π1, . . . , πd be proportions of re-

spondents whose true values fall in each of d values of X and

λa be the empirical probabilities of the observed Y being v,

we can write (λ1, . . . , λd)
T = PT (π1, . . . , πd)

T . According

to [9], an unbiased estimator π can be computed as

π̂ = (PT )−1λ̂,

where λ̂ = (λ̂1, . . . , λ̂d)
T is the vector of observed empirical

probabilities of Y .

2.2 Multi-Dimensional RR

RR works well for a single attribute. However, when mul-

tiple attributes X1, . . . , Xm are given, the estimation is not

so trivial because of the curse of dimensionality. Apply-

ing RR simultaneously to all attributes suffers the expo-

nentially grown number of possible values in the Cartesian

product of attributes. Alternatively, applying RR indepen-

dently to each attribute may loss the association between

the attributes. To overcome the dimensionality issue, [3]

proposed two basic protocols RR-Independent and RR-Joint

as follows.

2.2.1 RR-Independent

Each party apply RR independently for m attributes

X1, . . . , Xm in a dataset simply as Y = (Y 1, . . . , Y m),

where Y j = RRP j (Xj). After estimating the marginal

probabilities for j-th attribute as π̂j = (P jT )
−1

λ̂j , the joint

probability distribution for X1, . . . , Xm is estimated by the
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Algorithm 2 Estimation from RR-Independent RR-Ind(Y )

1: λ̂j ← observed empirical probability for attribute Aj .

2: for all j = 1, . . . ,m do

3: estimate the marginal probability π̂j ← ((P j)T )−1λ̂j

4: end for

5: return the joint probability of A1 × · · · × Am estimated as

Σ̂
(1,...,m)
RR−ind ← π̂1(x1) . . . π̂m(xm)

product of the each marginal distributions as

Σ
(X1,...,Xm)
RR−Ind (a1, . . . , am) = π̂1(a1) · · · π̂m(am).

Algorithm 2 show the steps.

2.2.2 RR-Joint

Regarding values of m attributes as a single tuple

(a1, . . . , am), parties apply a single RR to the tuple

using a d1 × · · · × dm randomization matrix for at-

tributes X1, . . . , Xm, respectively. The joint probability

Σ̂
(X1,...,Xm)
RR−Joint can be estimated as (PT )−1λ̂X1,...,Xm .

According to [3], RR-Joint has some drawbacks; (1) the

number of values (categories) of the Cartesian product grows

exponentially. (2) the inverse of the randomization matrix

needs a high computational costs. (3) the number of users n

that is less than the product of of m domains of attributes

such that n < |X1| · · · |Xm| incurs estimation accuracy loss.

To overcome the issues, several multi-dimensional RR

schemes were proposed in [3], including RR-Clusters split-

ting attributes into clusters so that the independence be-

tween clusters can be assumed with reasonable computa-

tional cost.

2.3 Related Works

Ren et al. studied a LDP scheme called LoPub, esti-

mating multi-dimensional joint probability distributions in

[4]. They perturbs a multi-dimensional data encoded binary

vectors using Bloom filter (similar to RAPPOR [12]) and

combine a Lasso regression with an Expectation Maximiza-

tion to estimate the joint probabilities accurately. They also

show a synthesized data that preserves the utility of the orig-

inal data in the sense that classification accuracies for some

machine learning algorithms are preserved as original.

Ye et al. proposed the LDP protocol designed for a key-

value data in [5]. Their scheme encodes a numerical data

into discrete values according to a probability which is pro-

portional to the value and then perturbs the key jointly with

the encoded value using a variation of randomized response.

The associations between key and value are preserved from

the randomized pairs with the privacy of input is guaran-

teed in a specified privacy budget. Their scheme is classified

as a two-dimensional RR with nominal (key) and numerical

(value) attributes.

3. Proposed Method

3.1 Idea

Dimensional issues in RR exist when we consider all m

joint probability distributions. However, most use-cases do

not need the association among all attributes and two or

three associations are useful enough for many cases. For

example, a key-value pair (2 dimension) has been used in

variety of applications with SQL database. With a limited

number of attributes, it is not so hard to perform inverse

of randomization matrix in terms of computational time or

memory consumption. We demonstrate that the 3-way joint

probabilities of “Adult” dataset can be estimated accurately

in this work.

Our method guarantees the differential privacy as same

as RR-Independent, where the privacy budget is given the

total sum of m privacy budgets, mϵ, due to the sequential

compositional theorem of LDP [11]. We perturb data as

same as RR-Independent, but estimate similar to RR-Joint.

Hence, we call the method as RR-Ind-Joint.

One of the concern of multi-dimensional RR is the es-

timation error. The estimation accuracy may be reduced

with a complex conditions, e.g., when the number of users

n is not sufficient for the product of domains, when the pri-

vacy budget ϵ is too small to preserve the properties, when

the number of of values d in attributes is too large, and so

on. To quantify the estimation error, we prove some useful

properties to bound the error in some simple model with

assumptions.

3.2 RR-Ind-Joint

3.2.1 Randomization

Suppose that all m attributes are independently random-

ized form randomization matrices P 1, . . . , Pm. To estimate

joint probability distributions, we need to aggregate all inde-

pendent randomizations into a unified matrix in some way.

The following theorem shows the composition of two random

matrices.

Theorem 1 Let P i and P j be di × di and dj × dj ran-

domization matrices for attributes Ai and Aj , respectively.

The (didj)× (didj) matrix of defined as Kronecker product

P i ⊗P j is a randomization matrix for Cartesian product of

domains Ai and Aj , that is, puv of P i ⊗P j is a conditional

probability puv = Pr[(Y i, Y j) = u|(Xi, Xj) = v].

Proof: Let u and v be tuples of attributes Ai and Aj such

that u = (yi, yj) and v = (xi, xj). From the premises, for

attributes Ai and Aj , pixiyi = Pr[Y i = yi|Xi = xi] and

pjxjyj = Pr[Y j = yj |Xj = xj ] hold. According to the def-

inition of Kronecker product, we have the (didj) × (didj)

matrix as

P i ⊗ P j =


p11P

j · · · p1diP j

...
. . .

...

pdi1P
j · · · pdidiP j

 ,

where element puv is piyixi · pjyjxj , which is equal to the

joint probability of u and v because two randomizations are

independently performed as

Pr[(Y i, Y j) = u|(Xi, Xj) = v]

= Pr[Y i = yi|Xi = xi]Pr[Y j = yj |Xj = xj ].

2

- 458 -



Algorithm 3 Estimation in RR-Ind-Joint

1: Y j ← RR-indP j (Xj) for j = 1, . . . ,m.

2: λ̂Y 1,...,Y m ← observed empirical probability for attributes

(Y 1, . . . , Y m).

3: return the joint probability estimated as Σ̂(1,...,m) = ((P i1 ⊗
· · · ⊗ P ik )T )−1λ̂Y 1,...,Y m

.

Due to the associativity of Kronecker products, i.e., (A⊗
B) ⊗ C = A ⊗ (B ⊗ C), we can easily extend the random-

ization matrix to multi-dimensional attribute.

Corollary 1 Let P i1 , . . . , P ik be randomization matri-

ces for k attributes Ai1 , . . . , Aik . A matrix defined by

P i1⊗· · ·⊗P ik is a randomization matrix for |Ai1 |×· · ·×|Aik |
where |Ai| is a domain of attribute Ai.

Proof: It is straightforward by recursively applying The-

orem 1 to every two attributes in turn. 2

3.2.2 Estimation

We consider to estimate the joint probability of attributes

Ai and Aj from the independently randomized response

Y 1, . . . , Y m.

Algorithm 3 shows the procedure for estimate the joint

probabilities of k attributes from independently random-

ized responses Y 1 . . . Y k. Note that the Cartesian prod-

uct of k attributes is in the order consistent with that of

(P i1 ⊗ · · · ⊗ P ik).

The inverse of Kronecker product can be given as

(A⊗B)−1 = A−1 ⊗B−1,

which stats that the composed randomization matrix P i1 ⊗
. . .⊗P ik is non-singular if and only if P i1 , . . . , P ik are non-

singular. It also means that the cost for computing matrix

inversion is linear to the number of attributes to be aggre-

gated because and the Kronecker product of all separate

inverses gives the inverse of the aggregated matrix. Com-

puting the inverse of randomization matrix does not need

any record and hence it can be preprocessed. Each ran-

domization matrix is determined only by the size of domain

d and the privacy budget ϵ. Hence, some matrices can be

identical and help to save computational cost. Therefore,

our proposed method is efficient in terms of computational

cost.

3.3 Example

Consider a dataset X on n = 10 parties with two at-

tributes A and B having domain |A| = {a1, a2} and |B| =
{b1, b2}. The empirical (true) joint probability distribution

of X is as follows:

ΣAB(a1, b1) = 4/10,

ΣAB(a2, b1) = 2/10,

ΣAB(a1, b2) = 0,

ΣAB(a2, b2) = 4/10.

This yields marginal distributions πA = (0.4, 0.6) and πB =

(0.6, 0.4). We denote frequencies of X by 2× 2 matrix as

fX =

(
4 0

2 4

)
,

which indicates frequencies of (a1, b1), (a2, b1), (a1, b2), (a2, b2)

of X, respectively.

With pA = pB = 3/4, we have randomization matrices

for A and B as

PA =

(
pA qA

qA pA

)
=

(
3/4 1/4

1/4 3/4

)
= PB ,

for which n parties randomize their two responses xA
i , x

B
i

independently. Suppose that the randomized Y A =

RRPA(XA) and Y B = RRPB (XB) are observed as

fY =

(
3 2

2 3

)
,

for which the empirical probabilities of Y are λA = (0.5, 0.5)

and λB = (0.5, 0.5). Note that V statistics of A and B is

VAB(Y ) = 0.2, which is reduced from that of the original

dataset VAB(X) = 0.67. Clearly, the correlation between A

and B is partially reduced by independent randomizations.

RR-Ind estimates the joint probabilities as the product of

estimated marginal distributions π̂A and π̂B as

Σ̂AB
RR-Ind =

(
0.24 0.36

0.16 0.24

)
,

which preserves the marginal distributions π̂A
RR-ind =

(0.4, 0.6) = πA and π̂B
RR-ind = (0.6, 0.4) = πB , but fails esti-

mating the joint probabilities correctly. It has MAE= 0.16

and VAB(Σ̂AB
RR-Ind) = 1× 10−19(= 0).

RR-Ind-Joint regards independent two randomizations as

joint processing of

λAB = (PA ⊗ PB)πAB ,

where PA ⊗ PB is the aggregated randomization matrices
papb paqb qapb qaqb
paqb papb qaqb qapb
qapb qaqb papb paqb
qaqb qapb paqb papb

 =
1

16


9 3 3 1

3 9 1 3

3 1 9 3

1 3 3 9

 .

Given the observed the empirical distributions of Y as

λAB(a1, b1) = 3/10, λAB(a2, b1) = 2/10, λAB(a1, b2) =

2/10, λAB(a2, b2) = 3/10, we estimate the joint probability

distribution of two randomized attributes as

Σ̂AB
RR-Ind-Joint = (PA ⊗ PB)−1λAB = (0.375, 0.075, 0.275, 0.375)

The estimated joint probabilities have smaller error than

that of RR-Ind, i.e., MAE(RR-Ind-Joint) = 0.05 and and the

correlation between attributes is V AB(Σ̂AB
RR-Ind-Joint) = 0.8,

which is close to the original VAB(X) = 0.67. The esti-

mation error is caused by rounding frequencies of RR when

n = 10. It is improved as MAE = 0.01 when n = 100.
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3.4 Privacy

The privacy of the schema RR-ind-joint is that of RR-Ind.

Suppose a simple RR that responses x with probability of

p = eepsilon

eϵ+d−1 and with probability q = 1 − p = d−1
eϵ+d−1 re-

sponses a randomly chosen value in |A|.
Theorem 2 RR-Ind-Joint satisfies (ϵ, 0)-LDP for at-

tribute A. With m attributes A1, . . . , Am, RR-Ind-Joint

satisfies (mϵ, 0)-LDP.

Proof: For any x, x′ ∈ |A| such that x ̸= x′, and any

y ∈ |A|

Pr[RR(x) = y]

Pr[RR(x′) = y]
=

p

q
= eϵ

Because m attributes are perturbed independently, the se-

quential decomposition theorem stats that RR-Ind-Joint sat-

isfies (mϵ, 0)-LDP. 2

3.5 Estimation Error

We evaluate the accuracy loss by means of MAE (Mean

Absolute Error) of the estimated joint probability distri-

butions, defined as MAE = 1/d2
∑

x∈|A|×|B| |Σ
AB(x) −

Σ̂AB(x)| for several environments.

First, we show the bound of MAE of RR-Independent.

Theorem 3 Let A and B be two attributes with the

Cramer’s V statistics V and the same number of values in

both domains, d = |A| = |B|. MSE of RR-Ind is less than

V 2/d.

Proof: The definition of V statistics is V =√
χ2/n(d− 1). Squaring and dividing both sides by

d, we have

V 2/d =
χ2/n

d(d− 1)
≤ 1

nd2

d2∑
i=1

(oi − ei)
2

ei

=
1

d2

∑
a∈|A|,b∈|B|

(o(a,b)/n− λ̂aλ̂b)
2

λ̂aλ̂b

≤ 1

d2

∑
a∈|A|,b∈|B|

(ΣAB(a, b)− λ̂aλ̂b)
2

= MSE(ΣAB).

Note that expected value ei is the mean of binomial distri-

bution of p = ΣAB
RRInd and n trials, i.e., np = nλ̂A(a)λ̂B(b).

The last inequality holds when λ̂aλ̂b ≤ 1.0. 2

Taking squared root of the both sides, we estimate that

MAE of RR-Independent is proportional to V/
√
d

MAE of RR-Ind-Joint does not depend on V because it es-

timates the joint probability of attributes by the inverse of

randomization matrix. RR-Ind-Joint has no estimation error

as far as all randomization matrices for attributes are non-

singular. Differential private randomization matrix with

p = eϵ

eϵ+d−1 , q = 1
eϵ+d−1 becomes singular only when ϵ = 0

and p = 1/d. It is not hard to avoid the trivial case ϵ = 0, we

confirm that all randomization matrices are non-singular.

However, the estimation of RR-Ind-Joint suffers a round-

ing error of empirical probability distribution λAB(Y ). The

observed probability of (a, b) of Y is the fraction of users

who send (a, b) of n users. Hence, the precision of of empiri-

cal probability λAB(Y ) is 1/n. Let us remind the estimation

error in the example in Section 3.3, where MAE= 0.05 when

n = 10. We consider a model of empirical probability as the

form,

λ̂ = λ+∆λ,

where ∆λ is the rounding error. The example in Section 3.3

has the instance,

λ̂AB =


3/10

2/10

2/10

3/10

 =


0.2875

0.1625

0.2625

0.2875

+


−0.0125

−0.0375

+0.0625

−0.0125


where the last vector is the rounding error ∆λ for n = 10.

We regard a rounding error as a uniform distribution over

[−1/n, 1/n], which holds E[∆λ] = 0 and E[|∆λ|] = 1/2n.

With the model, the estimation of joint probability is

Σ̂ = P−1λ̂ = P−1(λ−∆λ) = Σ− P−1∆λ.

The last term of the above formula is the source of MAE

of RR-Ind-Joint. It is the linear combination of d2 uniform

distribution and can be approximated as normal distribu-

tion with the mean increasing with 1/n. It is not trivial to

estimate P−1∆λ because the inverse of aggregated random

matrix has elements distributed widely than [0, 1]. We say

that it increases as n decreases, as d increases, and as p

decreases.

4. Evaluation

4.1 Data

To quantify utility loss in processing RR and estimating,

we synthesize a dataset with two attributes A and B having

marginal probability λA = λB distributed in Pr(A = a) =

c/a for a = 2, . . . , d and a constant c = 1/(
∑d

a=2 1/a). The

domain of attribute A is denoted by |A| = {c/2, . . . , c/d},
where d is the number of unique values in attribute A. The

correlation between attributes is controlled for Cramer’s V

statistics v = VAB ∈ [0, 1].

Figures 1, 2, 3 and 4 show the joint probability distri-

butions A and B with n = 1000, d = 10, v = 0.5, for the

synthesized data ΣAB(X), the perturbed data Y = RR(X)

with ϵ = 1 λAB(Y ), the estimated probability by RR-Ind

Σ̂AB
RRInd(X) and the estimated probability by RR-Ind-Joint

Σ̂AB
RRIndJoint(X), respectively. We observe that the joint prob-

ability of the given data X with Cramer’s V of v = 0.5 has

strong correlation at the diagonal elements in the Cartesian

product |A| × |B|, which is distributed widely in the per-

turbed data Y . The RR-Ind fails to estimate the strong

correlation between two attributes in Σ̂AB
RRInd(X). While,

the RR-Ind-Joint estimates the joint probabilities more ac-

curately in Figure 4. Estimated probabilities are not ex-

actly same to that of the original X because the precision

of the empirical distribution λAB depends on environmen-

tal parameters, e.g., the number of individuals n, the size of
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Fig. 1 Synthesized data ΣAB(X)

X

Y

Yab

Fig. 2 Perturbed data λAB(Y )

X

Y

X
ab.i

Fig. 3 Estimated data RR-Ind Σ̂AB
RRInd(X)

attribute domain (the number of unique values) d, privacy

budget ϵ and the correlation of two attributes. Hence, we

evaluate the accuracy loss in terms of these parameters.

4.2 Results (synthesized data)

Figures 5, 6, 5 and 8 show the MAE with regards to

Cramer’s V statistics v ∈ [0, 1], the MAE with regards to

privacy budget ϵ = 0.1, . . . , 2, the MAE with regards to the

number of individuals n = 10, 100, 1000, 10000, the MAE

X

Y

X
ab.j

Fig. 4 Estimated data RR-Ind Σ̂AB
RRIndJoint(X)
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Fig. 5 MAE with regards to correlation v

with regards to the size of domains (the number of unique

values in attribute) d(= |A| = |B|) = 2, . . . , 20, respectively.

Figure 5 shows that the estimation error of RR-Ind de-

pends on the correlation between attributes. MAE is pro-

portional to V with two extreme cases; 0 when A and B are

independent (V = 0) and the highest when A completely

depends on B (V = 1). RR-Independent estimates the joint

probability with the product of two marginal probabilities

as Σ̂AB(a, b) = σ̂A(a)σ̂B(b) under an assumption of inde-

pendent attributes, for which V = 0. Hence, the estimation

error is linear to V that is considered as a fraction of inde-

pendent pair of values (a, b) over d × d pairs. While, MAE

of RR-Ind-Joint does not depend on V . It estimates joint

probabilities accurately whatever attributes are correlated.

Figure 6 shows that MAE of RR-Ind-Joint decreases as pri-

vacy budget ϵ increases, which follows in turn the increases

of the probabilities of retaining. It also indicates that MAE

of RR-Independent is constant because the primary part of

estimation error is caused by the strength of correlation be-

tween attributes and the effect of privacy budget is hide of

the error.

MAE of RR-Ind-Joint depends on the number of users n

and the size of domains d = |A|. We observe the reduction

of MAE with n in Figure 7. MAE of RR-Ind-Joint decreases

in the order of 1/n when n > 1000. MAE also tends to
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Fig. 8 MAE with regards to the size of domain d(= |A|)

increase with d in Figure 8. Therefore, we claim that RR-

Ind-Joint estimation needs sufficient number of users and has

a limitation of number of attributes to aggregate.

The reduction of MAE with increasing d is consistent with

Theorem 3 that stats MAE is linear to 1/
√
d.

4.3 Result (Adults)

Table 1 shows the MSE in some two attributes in UCI

Adult dataset, where n = 32561 and probability to retain

Table 1 Mean Squared Error in Adult data

sex income sex race education occupation
d 2 2 2 5 16 15
V 0.2159802 0.1181155 0.1873341

RR Ind 0.00188 0.00011 2.14× 10−5

RR Ind Joint 2.93× 10−33 3.61× 10−33 5.48× 10−33

Fig. 9 Histogram of “Age” and “sex”Fig. 10 Randomized Y

Fig. 11 Estimated Σ̂RRInd Fig. 12 Estimated Σ̂RRIndJoint

data p = 0.5.

Fig 9 shows the frequency distributions of male (light)

and female (dark) and age categorized in 20-years-old bins.

The continuous data are quantified into five categories in

this experiment. Figs. 10, 11, and 12 show the joint fre-

quency distributions performed by RR(X), RR-Independent

and RR-Ind-Joint, respectively. The estimation of RR-Ind-

Joint is close to the original distribution Σ.

5. Conclusion

In this paper, we have studied the randomization of a

multi-dimensional data. Due ot the curse of dimensional-

ity, näıvely independent randomization of attributes suffers

several issues, e.g., the combination of domain grows up ex-

ponentially, it violates the association among attributes, and

there are too small records to cover the combined domain,

i.e., sparse domain issue.

Our proposed method RR-Ind-Joint addresses the dimen-

sionality issues, by aggregating independently randomized

matrix into a single randomization matrix and estimating

the joint probability distribution of the original attribute by

inverse of the aggregated randomization matrix. We show

some useful theorems that guarantees that the proposed

scheme can be applied to arbtrary number of dimensions

regardless of the strength of association among attributes.

The estimation is quite accurate in comparison with the one

of the existing scheme. Our experiments using synthesized

and open data verified that the estimation error of RR-Ind-

Joint does not depend on the association between attributes.

We plan to compare the estimation accuracy with some of
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the state-of-arts schemes in multi-dimensional LDP schemes

as one of future works.
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