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Abstract

Methodologies and environments of software configuration management (SCM) have been studied and employed
to describe and manage software architectural aspects and their changes. This paper reviews the theory that we have
already developed on software architectural changes themselves to be managed by SCM, and applies it to a
taxonomical study on software architectural changes. There are 1,024 categorical candidates of changes. Those
candidates are analyzed theoretically, and it is shown that there are 80 theoretically acceptable categories.
Furthermore, they are reviewed from a practical point of view. In the result, 46 theoretically and practically

acceptable categories are made explicit. This leads to a better position where we have an insight into software
architectural changes.



1. Introduction

A software system architecturally changes or
evolves during development and maintenance.
Software configuration management (SCM) addresses
such changes. Conventional studies focus on
methodologies and environments of SCM [Bers80,
Nara87, Yau 87, Baze85, Rend8s, Estu89].

The analysis of software architectural changes to be
managed has not been treated explicitly so far. We are
not placed in a position' where we can penetrate into
software architectural changes. The theory of SCM is
also still in its infancy, and the management methods
tend to be ad hoc.

Furthermore, software systems tend to form a
family where relationships among software entities are
much more complicated, and tend to evolve as a family.
A sound and penetrating theoretical framework of SCM
becomes increasingly necessary to manage an evolving
family of software systems. As a step toward such a
framework, it is indispensable to have an insight into
software architectural changes themselves.

A theory of software architectural changes was
developed by the authors{Ohmo90]. In the theory, a
software system configuration is formalized; its
architectural changes are analyzed in a set-theoretical
manner; and some useful results on software
architectural changes are presented.

In this paper, the previous work is briefly reviewed,
and the theory is applied to a taxonomical study on

" software architectural changes. It is shown that
categorical complexity of changes can be drastically
reduced. A taxonomical table that includes theoretically
and practically acceptable categories of changes is
presented.

2. Software system configurations

2.1 Entities and relationships

A software system configuration can be described
by means of software architectural entities and
relationships among them [McCa75, Bers80, Nara87].
A software architectural entity, called an entity in what
follows, is a functional unit in a software system.

There are several types of entities, such as modules,
programs and subsystems. ‘We can recognize, among
others, an emity that uses other entities to implement its
function and can be regarded as a delivery unit to a
customer. Such an entity is called a system entity.

A system entity usually differs from a software
system itself. A software system is a composite of a
system entity and other entities. In other words, it
contains a system entity as one of the integral parts.

An entity is observed from a macroscopic

viewpoint in this paper. Any entity ¢ is expressed as a
pair of its name n and its body b, that is, e = (n, b). If an
entity e = (n, b) is a program, n and e respectively
correspond to its name and the set of its statements.

It is assumed that there is a universal set of entities,
which is denoted by E. The name of a system entity
might be different from the name of a software system
that contains the system entity. In this paper, however,
the name of a system entity is regarded as that of a
software system, and vice versa.

We can observe it in a software systcm that an
entity uses other entities to implement its function, or is
used by other entities to implement their functions.
From this observation, a binary relation USE in the sct
E is introduced as follows: (¢, ¢) € USE & E X E!
if and only if an entity e uses an éntity e' in order to
implement its function. For a USE relation, we assume
that (e,e) ¢ USE forany ¢ € E. :

2.2 Configurations

Let T be a time set and t € T be arbitrary; s any
software system name. Let E(s; t) & E be the set of
entities that are employed at time t to configurc a
specific software system named s. Let USE/E(s; t) be
the relation induced by USE in E(s; t), that is, USE/E(s;
t) = USE M (E(s; t) X E(s; 1).

Then, if SC(s; t) = <E(s; t); USE/E(s; t)> satisfies
the following conditions, it is called a system
configuration for s at time t.

(a) E(s; t) contains one, and only one system entity
named s.

(b) E(s; t) is a finite set.

(c) For any (n, b) and (n', b") € E(s; t),ifb=b,n=n".

(d) For any (n, b) and (', b") € E(s; t),if n=n",b=b".

(e) If Card(E(s; t)) = 2, for any entity e € E(s; t), there
exits an entity ¢' € E(s; t) such that (e, ") € USE or (¢',
¢) € USE, where Card(E(s; t)) is the cardinal number of
E(s; t), that is, the number of entities in E(s; t).

A software system configuration is represented by
two parts. One is an elemental part E(s; t), and the other
is a structural part USE/E(s; t).

3. A theory of software architectural changes
For a system configuration SC(s; t) = <E(s; t);
USE/E(s; t)>, we have some theoretical results on its
architectural changes [Ohmo90]. To show them; let us
introduce the following notations.
NAME(SC(s; ) = {n |(n,b) € E(s; )} .
BODY(SC(s; )= {b I(n,b) € E(s; 1) }.
N-struct(SC(s; t))
= |m,n") ((n,b), (', b)) € USE/E(s; t) }.

1 The expression '’X & Y' means that X is a
subset of Y; equality is not excluded.



B-struct(SC(s; t))
= {(b,b) l((n,b), @', b)) € USE/E(s; 1) | .

Prop. 1

For any system configuration SC(s; t) = <E(s; t);
USE/E(s; t)>, Card(E(s; t)) = Card(NNAME(SC(s; t)) =
Card(BODY(SC(s; ©).1

Prop. 2

Let SC(s; t) = <E(s; t); USE/E(s; t)> be an arbitrary
system configuration. If Card(E(s; t)) = 1, USE /E(s; t)
= (& and therefore N-struct(SC(s; t)) = ¢ and B-struct
SCs)=a.1

Prop: 3

Let SC(s; t) and SC(s'; t') be arbitrary system
configurations. If E(s; t) # E(s"; t') and USE/E(s; ¢) =
USE/E(s"; t'), Card(E(s; t)) = 1 and Card(E(s’; t)) = 1.t

Prop. 4

Let SC(s; t) and SC(s'; t') be arbitrary system
configurations. If E(s; t) # E(s'; t'), USE/E(s; t) # USE
/E(s’; t') and Card(E(s; 1)) = Card(E(s’; t), Card (E(s; 1))
2 2 and Card(E(s’; t')) 2 2.1

Prop. 5

Let SC(s; t) and SC(s"; t') be arbitrary system
configurations; and E(s; t) = E(s'; t). Then, the
following hold.

(a) Card(E(s; )) = Card(E(s"; t)).

(b) NAME(SC(s; t)) = NAME(SC(s'; t).

(c) BODY(SC(s; t)) = BODY(SC(s"; ).

(d) USE/E(s; t) = USE/E(s’; t).

(e) N-struct(SC(s; t)) = N-struct(SC(s"; t')).

() B-struct(SC(s; 1)) = B-struct(SC(s"; t9).1

Prop. 6

Let SC(s; t) and SC(s'; t') be arbitrary system
configurations. If E(s; t) # E(s"; t) and USE/E(s; t) =
USE/E(s"; t), NAME(SC(s; t)) # NAME(SC(s'; t)) or
BODY(SC(s; t)) # BODY(SC(s'; t)).1

Prop. 7

Let SC(s; t) and SC(s"; t') be arbitrary system
configurations; Card(E(s; t)) = 2; Card(E(s; t) = 2;
and N-struct(SC(s; t)) = N-struct(SC(s'; t')). Then,
NAME(SC(s; t)) = NAME(SC(s'; t)).1

Prop. 8

Let SC(s; t) and SC(s'; t') be arbitrary system
configurations; Card(E(s; t)) = 2; Card(E(s'; ")) = 2;
and B-struct(SC(s; t)) = B-struct(SC(s'; t')). Then,
BODY(SC(s; t)) = BODY(SC(s'; t).t

Prop. 9

Let SC(s; t) and SC(s'; t') be arbitrary system
configurations. If N-struct(SC(s; t)) = N-struct(SC(s";
1)), Card(E(s; v)) = Card(E(s’; t).t

Prop. 10

Let SC(s; t) and SC(s; t) be arbitrary system
configurations. If B-struct(SC(s; t)) = B-struct(SC(s";

t)), Card(E(s; 1)) = Card(E(s’; ).t
Prop. 11
Let SC(s; t) and SC(s"; t') be arbitrary system
configurations. Then, the following hold.
(a) If NAME(SC(s; t)) N NAME(SC(s'; t)) = &, N-
struct(SC(s; t)) N N-struct(SC(s"; 1)) = & .
(b) If BODY(SC(s; t)) N BODY(SC(s'; t')) = @&, B-
struct(SC(s; )) N B-struct(SC(s; t) = .1
Prop. 12
Let SC(s; t) and SC(s' t') be arbitrary system

‘configurations; Card(E(s; t)) = 2. Then, the following

hold.

(a) If N-struct(SC(s; t)) S N-struct(SC(s'; t')), NAME
(SC(s; t)) < NAME(SC(s'; t)).

(b) If B-struct(SC(s; 1)) & B-struct(SC(s’; t)), BODY
(SC(s; t)) € BODY(SC(s'; t).1

4. Taxonomical viewpoints and categorical
candidates

This section discusses what viewpoints can be used
for a taxonomy of software architectural changes, and
how many categorical candidates of changes we can
encounter.

Let us consider the case where a system
configuration SC(s; t) = <E(s; t); USE/E(s; t)> changes
to a system configuration SC(s'; t') = <E(s; t'); USE
/E(s"; t)>. Then, we have four types of changes,
including invariant. The first is that E(s; t) = E(s'; t')
and USE/E(s; t) = USE/E(s"; t'). The second is that E(s;
t) = E(s'; t') and USE/E(s; t) #USE/E(s'; t'). The third is
that E(s; t) # E(s; t') and USE/E(s; t) =USE/E(s"; t).
The fourth is that E(s; t) #E(s"; t') and USE/E(s; t)
#USE/E(s; t).

The upper left part of Fig. 1 shows these types. The
elemental parts E(s; t) and E(s'; t') have their nominal
aspects and bodily aspects, and so do the structural parts
USEJ/E(s; t) and USE/E(s'; t).

For each type of change, therefore, we can consider
sixteen types of changes based on four cases, which are
shown on the upper right part of Fig. 1. The first case is
whether or not NAME(SC(s; t)) # NAME(SC(s'; t)).
The second is whether or not BODY(SC(s; t)) #
BODY(SC(s"; t')). The third is whether or not N-struct
(SC(s; t)) # N-struct(SC(s"; t')). The fourth is whether
or not B-struct(SC(s; t)) # B-struct(SC(s"; t).

At this point, we have 64 categorical candidates of
changes, including 60 candidates for which we can
observe some change in at least one aspect. From more
detailed observations, we have 16 candidates where
only one aspect changes, 24 candidates for two aspects,
16 candidates for three aspects, and 4 candidates for
four aspects.



In the above discussions, the difference between
SC(s; t) and SC(s'; t') is denoted by a mere inequality.
Such a difference can be considered more concretely.

Let us consider, for example, NAME(SC(s; 1)) #
NAME(SC(s'; t')).. We can classify this difference into
three cases. The first is that NAME(SC(s; t)) N NAME
(SC(s'; t)) = @. The second is that NAME (SC(s; t))
< NAME(SC(s'; t'))2 or NAME(SC(s’; t)) © NAME
(SC(s; t)). The third is that = (NAME(SC(s; t)) C
NAME(SC(s'; t))), = (NAME(SC(s"; t)) € NAME
(SC(s; t))) and NAME(SC(s; t)) N NAME (SC (s'; t)
# @. The expression —(a statement) means the
negation of the statement.

For the other three aspects, their respective
differences can be similarly classified into three cases,
also, as is shown on the lower part of Fig. 1.

At this point, we have 1,024 categorical candidates
of changes, which is derived from the algebraic

expression 4x(1x30+4x31+6x32+4x33+1x34). Thus,
we have a great number of candidates for software
architectural changes even if we roughly observe
software architectural changes. However, we can
investigate whether or not each of those candidates is
theoretically meaningful.

5. Reducing categorical complexity

This section analyzes the categorical candidates
theoretically, and describes how the theory can be used
for reducing the categorical complexity.

Analysis 1

(See the top-level candidate A and the middle-level
candidate 1 in Fig. 1.)

Consider the case where E(s; t) = E(s'; t') and USE
[E(s; t) = USE/E(s; t'). From Prop. 5, we have that
NAME(SC(s; t)) = NAME(SC(s'; t), BODY(SC(s; 1)
= BODY/(SC(s"; t), N-struct(SC(s; t)) = N-struct (SC(s';
1)) and B-struct(SC(s; t)) = B-struct(SC(s'; t)).
Therefore, we can eliminate 255 out of 256 candidates.t

Analysis 2 )

(See the top-level candidate B in Fig. 1.)

Consider the case where E(s; t) = E(s'; t) and USE
[E(s; 1) # USE/E(s'; t'). This type of change shows that
the elemental part does not change but the structural
part does. However, (d) of Prop. 5 does not allow such
a type of change. Thus, all of 256 candidates are not
feasible, and so they can be eliminated.t

Analysis 3

(See the top-level candidate C, the middle-level
candidates 4, 5 and 11, and the bottom-level viewpoints
(a) and (d) in Fig. 1.)

2 The expression 'X C Y' means that X is a
proper subset of Y.

Consider the case where E(s; t) # E(s"; t') and USE
[E(s; t) = USE/E(s"; t'). From Props. 3 and 2, we have
that N-struct(SC(s; t)) = N-struct(SC(s"; t)) and B-struct
(SC(s; t)) = B-struct(SC(s'; t')). From Prop. 6, we have
that NAME(SC(s; t)) # NAME(SC(s'; t')) or BODY
(SC(s; t)) # BODY(SC(s"; t')). Therefore, we can
eliminate 241 out of 256 candidates. For such a type of
change, note that we address a system configuration that
consists of only a system entity. From this fact, NAME
(SC(s; 1)) # NAME(SC(s'; t')) implies NAME(SC(s; 1))
N NAME(SC(s'; 1) = @¥; and also, BODY(SC(s; t)) #
BODY(SC(s"; t)) implies BODY(SC(s; 1)) N BODY
(SC(s; t)) = @. Thus, we finally have 3 acceptable
change categories, that is, we can eliminate 253 out of
256 candidates.

Analysis 4

(Sece the top-level candidate D and the middle-level
candidates 4, 5, 8,9, 11, 14 and 15 in Fig. 1.)

Consider the case where E(s; t) # E(s'; t') and USE
/E(s; t) # USE/E(s"; t'). From Props. 9, 4 and 7, we
cannot allow any type of changes that satisfy both N-
struct(SC(s; 1)) = N-struct(SC(s"; t")) and NAME (SC(s;
t)) # NAME(SC(s'; t')). Similarly, from Props. 10, 4
and 8, we cannot allow any type of changes that satisfy
both B-struct(SC(s; t)) = B-struct (SC(s"; t)) and BODY
(SC(s; t)) # BODY(SC(s'; t)). These results enable us
to eliminate 87 out of 256 candidates.

Analysis §

(See the top-level candidate D, the middle-level
candidate 7, and the bottom-level viewpoints from (d) to
(f) and from (j) to (1) in Fig. 1.)

Consider the case where E(s; t) # E(s'; t') and USE
/E(s; t) # USE/E(s"; t'). And let NAME(SC(s; t)) =
NAME(SC(s'; t)); BODY(SC(s; t)) # BODY(SC(s';
17); N-struct(SC(s; t)) = N-struct(SC(s'; 1')); and B-struct
(SC(s; ) # B-struct(SC(s'; t). In this case, we have 9
candidates, but 6 candidates can be eliminated as
follows.

(1) From (b) of Prop. 11, we can eliminate 2
candidates.

(2) From Prop. 1, NAME(SC(s; t)) = NAME (SC(s';
t")) implies Card(BODY(SC(s; t)) = Card (BODY(SC(s';
t)). Therefore, neither BODY(SC(s; t)) < BODY
(SC(s"; 1)) nor BODY(SC(s"; t)) € BODY (SC(s; t)) is
feasible. This enables us to eliminate 3 candidates.

(3) Let = (BODY(SC(s; t)) < BODY(SC(s'; 1)),
- (BODY(SC(s"; 7)) € BODY(SC(s; t))) and BODY
(SC(s; 1)) N BODY(SC(s'; t)) #@; B-struct(SC(s; 1))
< B-struct(SC(s"; t)) or B-struct(SC(s'; 1)) < B-struct
(SC(s; t)). From (b) of Prop.. 12, this situation is not
feasible. Therefore, 1 candidate can be eliminated.t
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Analysis 6

(See the top-level candidate D, the middle-level
candidate 10, and the bottom-level viewpoints from (a)
to (c) and from (g) to (i) in Fig. 1.)

Consider the case where E(s; t) # E(s"; t) and USE
[E(s; t) # USE/E(s; t). And let NAME(SC(s; t)) #
NAME(SC(s"; t)); BODY(SC(s; 1)) = BODY(SC(s'; t));
N-struct(SC(s; t)) # N-struct(SC(s'; t')); and B-struct
(SC(s; t)) = B-struct(SC(s’; t)). In this case, we have 9
candidates. However, from (a) of Prop. 11, Prop. 1 and
(a) of Prop. 12, we can eliminate 6 candidates in a
similar way to Analysis 5.1

Analysis 7

(See the top-level candidate D, the middle-level
candidate 12, and the bottom-level viewpoints from (d)
to (1) in Fig. 1.)

Consider the case where E(s; t) # E(s; t') and
USE/E(s; t) # USE/E(s"; t'). And let NAME(SC(s; t)) =
NAME(SC(s'; t')); BODY(SC(s; t)) # BODY(SC(s';
t9); N-struct(SC(s; £)) # N-struct(SC(s'; t)); and B-
struct(SC(s; t)) # B-struct(SC(s"; t')). In this case, we
can eliminate 18 out of 27 candidates as follows.

(1) Let BODY(SC(s; t)) N BODY(SC(s'; t) = .
From (b) of Prop. 11, we can eliminate 6 out of 9
candidates.

(2) Let BODY(SC(s; t)) € BODY(SC(s"; tY)) or
BODY(SC(s"; 1)) < BODY(SC(s; t)). From Prop. 1,
NAME(SC(s; t)) = NAME(SC(s'; t')) implies Card
(BODY(SC(s; 1)) = Card(BODY(SC(s; t')). Therefore,
neither BODY(SC(s; t)) € BODY(SC(s'; t)) nor
BODY(SC(s"; t)) < BODY(SC(s; t)) is feasible. This
enables us to eliminate all of 9 candidates.

(3) Let = (BODY(SC(s; t)) < BODY(SC(s'; 1)),
—(BODY(SC(s"; t')) € BODY(SC(s; t))) and BODY
(SC(s; ©)) N BODY(SC(s; 1)) #. From (b) of Prop.
12, neither B-struct(SC(s; t)) € B-struct(SC(s'; t')) nor
B-struct(SC(s"; t')) & B-struct(SC(s; t)) is feasible. This
implies we can eliminate 3 out of 9 candidates.t

Analysis 8

(See the top-level candidate D, the middle-level
candidate 13, and the bottom-level viewpoints from (a)
to (¢) and from (g) to (1) in Fig. 1.)

Consider the case where E(s; t) # E(s’; t') and USE
[E(s; t) # USE/E(s; t). And let NAME(SC(s; t)) #
NAME(SC(s"; t)); BODY(SC(s; t)) = BODY(SC(s'; t));
N-struct(SC(s; £)) # N-struct(SC(s'; t')); and B-struct
(SC¢(s; t)) # B-struct(SC(s’; t)). In this case, we have
27 candidates. However, from (a) of Prop. 11, Prop. 1
and (a) of Prop. 12, we can eliminate 18 candidates in a
similar way to Analysis 7. t

Analysis 9

(See the top-level candidate D, the middle-level

candidate 16, and the bottom-level viewpoints from (a)
to (1) in Fig. 1)

Consider the case where E(s; t) # E(s’; t') and
USE/E(s; t) # USE/E(s’; t'). And let NAME(SC(s; t))
# NAME(SC(s'; t)); BODY(SC(s; t)) # BODY(SC(s'
1); N-struct(SC(s; t)) # N-struct(SC(s'; t')); and B-
struct(SC(s; t)) # B-struct(SC(s’; t')). In this case, we
have 81 candidates. However, we can eliminate 45
candidates with Props. 11 and 12 as follows.

(1) Let NAME(SC(s; t)) N NAME(SC(s"; t') = &;
BODY(SC(s; t)) N BODY(SC(s'; t')) = . Then, from
Prop. 11, we can only accept the combination of N-
struct(SC(s; t)) M N-struct(SC(s’; t)) = & and B-struct
(SC(s; t)) M B-struct(SC(s"; t)) = . Therefore, we
can eliminate 8 out of 9 candidates.

(2) Let NAME(SC(s; t)) N NAME(SC(s'; t) =
BODY(SC(s; t)) € BODY(SC(s'; t')) or BODY(SC(s';
t)) € BODY(SC(s; t)). Then, from (a) of Prop. 11, we
can eliminate 6 out of 9 candidates.

(3) Let NAME(SC(s; t)) N NAME(SC(s'; t) = @&,
—(BODY(SC(s; t)) € BODY(SC(s"; t))), —~(BODY
(SC(s'; 1)) © BODY(SC(s; 1))) and BODY(SC(s; ) M
BODY(SC(s"; t')) # . Then, from (a) of Prop. 11, we
can eliminate 6 out of 9 candidates. From (b) of Prop.
12, we can furthermore eliminate 1 candidate.

(4) Let NAME(SC(s; t)) & NAME(SC(s'; ()) or
NAME(SC(s"; t)) € NAME(SC(s; t)); BODY(SC(s: 1))
N BODY(SC(s"; t)) = @. Then, from (b) of Prop. 11,
we can eliminate 6 out of 9 candidates.

(5) Let NAME(SC(s; t)) © NAME(SC(s'; t) or
NAME(SC(s'; ) € NAME(SC(s; t)); —(BODY(SC(s;
t)) < BODY(SC(s; t))), —(BODY(SC(s'; t))
BODY(SC(s; t))) and BODY (SC(s; t)) M BODY(SC(s’;
t)) # . Then, from (b) of Prop. 12, we can eliminate
3 out of 9 candidates.

(6) Let ~(NAME(SC(s; 1)) € NAME(SC(s'; t))),
—(NAME(SC(s'; t')) € NAME(SC(s; t))) and NAME
(SC(s; t)) N NAME(SC(s"; 1) # &; BODY(SC(s; 1))
N BODY(SC(s; t)) = . Then, from (b) of Prop. 11,
we can eliminate 6 out of 9 candidates. From (a) of
Prop. 12, we can furthermore eliminate 1 candidate.

(7) Let ~(NAME(SC(s; 1)) € NAME(SC(s'; t)),
—(NAME(SC(s'; t')) € NAME(SC(s; 1))) and NAME
(SC(s; t)) N NAME(SC(s'; t')) # &; BODY(SC(s; t))
C BODY(SC(s'; t)) or BODY(SC(s"; t)) € BODY
(SC(s; t)). Then, from (a) of Prop. 12, we can eliminate
3 out of 9 candidates. )

(8) Let ~(NAME(SC(s; t)) © NAME(SC(s'; t)), —
(NAME(SC(s'; t)) € NAME(SC(; t))) and NAME
(SC(s; ©)) N NAME(SC(s'; t)). # @&; —(BODY(SC(s;
f)) © BODY(SC(s"; t'))), ~(BODY(SC(s; t')) <
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BODY/(SC(s; t))) and BODY(SC(s; t)) N BODY(SC(s';
t)) # @. Then, from (a) of Prop. 12, we can eliminate
3 out of 9 candidates. From (b) of Prop. 12, we can
furthermore eliminate 2 candidates.t

From the above analyses, we can conclude that the
theoretical analysis makes it possible to eliminate 944
out of 1,024 categorical candidates.

6. Practical review of categories

The theoretical analysis reduces the categorical
complexity of software architectural changes to the
extent that 80 categories of changes are theoretically
acceptable. This section furthermore reviews those
acceptable categories from a practical point of view.

The 4 categories that are judged to be acceptable by
Analysis 1 and Analysis 3 are practically meaningful,
also. Therefore, the review can be restricted to those 76
theoretically acceptable categories in the case where
E(s; t) # E(s; t') and USE/E(s; t) # USE/E(s'; t).

Review 1

(See the middle-level candidate 1 in Fig. 1.)

Consider the case where NAME(SC(s; t)) = NAME
(SC(s'; t)); BODY(SC(s; t)) = BODY(SC(s"; t); N-
struct(SC(s; t)) = N-struct(SC(s"; t')); and B-struct
(SC(s; 1)) = B-struct(SC(s"; t)). In this case, we have 1
category that is theoretically acceptable. However, it
implies that the elemental part E(s; t) changes to E(s"; t')
without replacement of any entity name or any entity
body with a new one. For such a change, we can
observe that the name or body of an entity is exchanged
for the name or body of another entity within E(s; t).
This situation is little meaningful in practice.}

Review 2

(See the middle-level candidate 2 in Fig. 1.)

Consider the case where NAME(SC(s; t)) = NAME
(SC(s"; t)); BODY(SC(s; t)) = BODY(SC(s"; t)); N-
struct(SC(s; t)) = N-struct(SC(s’; t)); and B-struct
(SC(s; t)) # B-struct(SC(s’; t')). In this case, we have 3
categories that are theoretically acceptable. However,
each of them implies that the bodily aspect of the
structural part B-struct(SC(s; t)) changes to B-struct
(SC(s'; t)) without replacement of any entity body with
anew one. For such a change, we can observe that the
body of an entity is exchanged for the body of another
within BODY(SC(s; t)). This is also little meaningful. t

- Review 3

(See the middle-level candidate 3 in Fig. 1.)

Consider the case where NAME(SC(s; )) = NAME
(SC(s'; t); BODY(SC(s; t)) = BODY(SC(s'; t)); N-
struct(SC(s; t)) # N-struct(SC(s"; t')); and B-struct(SC(s;
t)) = B-struct(SC(s"; t)). In this case, we have 3
categories that are theoretically acceptable. However,

each of them is little meaningful in practice, also, due to
the observation similar to Review 2.1
Review 4
(See the middle-level candidate 6 in Fig. 1.)
Consider the case where NAME(SC(s; t)) = NAME

" (SC(s'; v)); BODY(SC(s; t)) = BODY(SC(s'; t)); N-

struct(SC(s; 1)) # N-struct(SC(s’; t)); and B-struct(SC(s;
1)) # B-struct(SC(s'; t)). In this case, we have 9
categories that are theoretically acceptable. In a similar
way to Review 2 or Review 3, they can be judged to be

- little meaningful in practice.t

Review §

(See the middle-level candidate 12 in Fig. 1.)

Consider the case where NAME(SC(s; t)) = NAME
(SC(s'; t)); BODY(SC(s; t)) # BODY(SC(s'; t)); N-
struct(SC(s; t)) # N-struct(SC(s'; t')); and B-struct(SC(s;
1)) # B-struct(SC(s'; t). In this case, from Analysis 7,
we have 9 categories that are theoretically acceptable.
However, they are little meaningful in practice from the
same reason that is mentioned in Review 3.1

Review 6

(See the middle-level candidate 13 in Fig. 1.)

Consider the case where NAME(SC(s; t)) # NAME
(SC(s'; tY); BODY(SC(s; t)) = BODY(SC(s'; t)); N-
struct(SC(s; t)) # N-struct(SC(s"; t)); and B-struct(SC(s;
1)) # B-struct(SC(s'; t)). In this case, from Analysis 8,
we have 9 categories that are theoretically acceptable.
However, they can be judged to be little meaningful in
practice based on the discussion in Review 2.1

Thus, from a practical point of view, we can
eliminate 34 out of those 76 theoretically acceptable
categories. In the result, we have 46 categories of
changes that are theoretically and practically
meaningful.

7. A taxonomical table

The finally accepted categories are summarized in
Table 1. The 'top’ column shows the candidates
accepted at the top-level in Fig. 1. For each of them, the
‘middle’ column shows the candidates accepted at the
middle-level in Fig. 1. Furthermore, for each candidate
in the 'middle’ column, the 'bottom’ column shows the
acceptable combinations of bottom-level viewpoints in
Fig. 1. Each combination of a top-candidate, a middle-
candidate and a bottom combination corresponds to a
finally accepted category, which is numbered.

Let us see the 8th category as an example. The top
is D, that is, E(s; t) '# E(s'; t) and USE/E(s; t) #
USE/E(s"; t). The middle is 10, that is, NAME(SC(s; t))
# NAME(SC(s"; t')); BODY(SC(s; t)) = BODY(SC(s';
t)); N-struct(SC(s; t)) # N-struct(SC(s'; t)); and B-
struct(SC(s; ) = B-struct(SC(s"; t')). The bottom is (a)-
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(g), that is, a combination of NAME(SC(s; t)) N
NAME(SC(s'; 1)) = & and N-struct(SC(s; 1)) M N-
struct(SC(s'; t) = @&.

8. Conclusions

A theory of software architectural changes has been
reviewed, and applied to a taxonomical study on
software architectural changes.

There are 1,024 categorical candidates of changes.
Those candidates have been analyzed theoretically, and
it has been shown that it is possible to eliminate 944 out
of 1,024 categorical candidates. We have 80 categories
of changes that are theoretically acceptable.

Furthermore, the theoretically acceptable categories
have been reviewed from a practical point of view, and
it has been shown that it is possible to eliminate 34 out
of the 80 theoretically acceptable categories.

In the result, we have 46 categories of changes that
are theoretically and practically meaningful. They have
been summarized in Table 1, which leads to a better
position where we have an insight into software
architectural changes. themselves. We can study
software architectural changes within those limited
categories.
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No. top | middle bottom
1 A 1
2 C 4 (d)
3 C 5 (a)
4 C 11 (a)-(d)
5 D 7 (d-G)
6 D 7 6O-G
7 D 7 6O-®
8 D 10 (a)-(g)
9 D 10 ©)-(g)
10 | D 10 (€)-()
11 | D 16 (a)-(d)-()-G)
12 | D 16 (@)-(&)-(g)-()
13 D 16 (@)-(e)-(g)-(k)
14 D 16 (a)-(e)-()-(O
15 D 16 @-O-®-0)
16 D 16 @-O-()-0)
17 D 16 O)-@d-(2)-()
18 D 16 (b)-(d)-(h)-(j)
19 D 16 (b)-(d)-()-()
20 | D 16 (b)-(e)-(g)-()
21 D 16 [ (b)-(e)-(g)-(k)
2 | D 16 (b)-(e)-(g)-(D
23 D 16 (b)-(e)-(h)-(G)
24 | D 16| (0)-(e)-(h)-(k)
25 D 16 (b)-(e)-(h)-(h
26 D 16 (b)-(e)-()-()
27 | D 16 (b)-(e)-(i)-(k)
28 D 16 (b)-(e)-(i)-(1)
29 D 16 (b)-()-()-()
30 | D 16 (b)-(O-(g)-(D)
31 D 16 (b)-(H-(h)-(G)
32 | D 16 (b)-(H)-(h)-(D
33 D 16 (b)-(H-()-G)
34 D 16 (b)-(O-G)-(D)
35 D 16 ©-d)-(2)-Q)
36 | D 16 ©-(d)-G0)-G
37 D 16 ©)-(e)-()-G)
38 D 16 (©)-(e)-(g)-(k)
39 D 16 (©)-(e)-(g)-(D
40 D 16 (©)-(e)-()-G)
41 D 16 (€)-(e)-()-(k)
42 D. 16 (©)-(e)-()-(H)
43 D 16 ©)-(O-(®)-()
4 | D 16 ©)-(0)-(g)-1)
45 D 16 ©)-(H)-M-G)
46 | D 16 (©)-(H-()-()

Table 1 A taxonomical table of changes




