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Extraction of Feature Quantities Suitable for Distribution
Visualization of Motion Capture Data
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Abstract: To handle a motion-capture (Mocap) data set such as a Mocap database, it is beneficial to grasp the overview
of the motion-characteristic distribution of the set in advance. To easily grasp the overview, concisely visualizing the
distribution using a scatter plot is effective. In this paper, we propose a new method to extract the feature quantities
suitable for the above visualization from each of the Mocap data. The one-dimensional motion-speed time series is
analyzed in the frequency domain. Consequently, two feature quantities representing the motion intensity and mo-
tion complexity are derived. It is shown in the scatter-plot-construction experiments that explicitly weighting each
frequency value in the frequency domain is effective for extracting the characteristics specific to each motion category.
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1. Introduction

Nowadays, motion-capture (Mocap) data are used for many
applications such as motion analysis, creating CG animations,
etc [1]. There are some research examples focusing on han-
dling Mocap data sets each of which includes the data of mul-
tiple motion categories, such as Mocap databases or Mocap
archives [2], [3]. In such cases, it is beneficial to grasp the
overview of a given Mocap data set in advance.

To easily grasp the overview of the motion-characteristic ten-
dency of a given Mocap data set, concisely visualizing their dis-
tribution in a simple manner is effective. A scatter plot is known
as one of the methods suitable for the above purpose. It is de-
signed to encode the values of the variables of each data unit in
the set as the vertical and horizontal coordinates of a data point,
and visually emphasizes and characterizes the distribution of all
the data points in a two-dimensional space [4], [5].

There are several examples in which scatter plots are used for
visualizing the motion-characteristic distribution of given Mo-
cap data sets [6], [7]. In most of them, the multidimensional
feature vector representing the motion characteristics of each of
the Mocap data is used. To encode the information on the mul-
tiple feature-vector coordinates as two scatter-plot coordinates,
techniques of dimensionality reduction, such as principal com-
ponent analysis (PCA) or multidimensional scaling (MDS), are
used [7]. However, two problems occur in the dimensionality-
reduction process. The first one is that the positions of all the
data points change even when only a small part of the data set is
changed (e.g., a small number of data are added or removed, or
partially replaced). The second one is that the meanings of the
vertical and horizontal axes cannot be known until the analysis is
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completed.
The above problems can be solved by essentially using only

two motion-characteristic variables. In this paper, we propose a
new method to extract two feature quantities suitable for visual-
izing the distribution of Mocap data in a scatter plot. We use the
one-dimensional motion-speed time series proposed in Ref. [8] to
extract the above quantities. This time series emphasizes only the
information on the temporal motion-speed variation of the whole
body, without considering the spatial arrangement of the body
parts. By using this time series, therefore, motion characteristics
can be concisely summarized with a small amount of information,
i.e., into only two feature quantities.

We analyze the above time series in the frequency domain. As
will be shown in Section 3, explicitly weighting each frequency
value in the frequency domain is effective for extracting the mo-
tion characteristics specific to each motion category. Finally, the
two feature quantities representing the motion intensity and mo-
tion complexity are derived.

We conduct experiments in which a Mocap data set including
multiple motion categories is used to construct scatter plots. We
compare the proposed method with the other conventional meth-
ods. The experimental results show that the proposed method can
provide better characteristics for the grouping of the motion cat-
egories than those provided by the other methods.

2. Derivation of Feature Quantities

First, we obtain a whole-body motion-speed time series from
the temporal variation of the positions of the principal joints (16
joints including end effectors: shoulders, elbows, wrists, fingers,
knees, ankles, toes, neck and head) [8]. We apply a technique of
the fast Fourier transform (FFT) [9] to the time series to extract
the frequency-domain characteristics. In this case, the length of
the time series is required to be a power of 2 [9]. To satisfy this
condition, we pad the time series with zeros as follows [9]:
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Fig. 1 Examples of motion-speed time series and their power-spectrum characteristics (Mocap data:
downloaded from “CMU Mocap Database” [11]).
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where pγ, i(n) is the γ-cooridnate of the ith joint in the coordinate
system fixed to the pelvis at the nth frame (γ: x, y or z, value of
pγ, i(n): normalized by the body height *1, time series of pγ, i(n):
filtered by a Gaussian filter to eliminate jitter), J is the number
of the principal joints (J = 16), Δt is the sampling time, N is the
number of the frames of a given time series *2 and NZP is the min-
imum power-of-2 integer satisfying NZP ≥ N and NZP ≥ 2,048 *3.

The power spectrum of a given motion-speed time series in the
frequency domain is obtained as follows [10]:
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where P(m) is the power spectral density, w(n) is the Hanning
window *4 and j =

√−1. Practically, V(m) is obtained by FFT.

*1 The original coordinate values are divided by the body height.
*2 In Eq. (1), v(n) is obtained in the region 1 ≤ n ≤ N. In actual calcu-

lations, v(n) is obtained only in the part of actual performance as will
be mentioned in Section 3. Therefore, v(N) can be obtained by using
pγ, i(N + 1) existing at the instant just after the performance. Otherwise,
pγ, i(N + 1) can be obtained by, e.g., linear extrapolation.

*3 The condition NZP ≥ 2,048 is introduced to ensure enough frequency
resolution for short time series. The frequency resolution is given as
Δ f = 1/(NZPΔt).

*4 Another window, e.g., Hamming [10], can be used as the need arises.

The physical dimension of P(m) is (speed)2/(frequency) [10].
This can be interpreted as that P(m) represents the degree of mo-
tion intensity at each frequency, and the total intensity can be
obtained by integrating P(m) over the whole frequency domain.
In the integration of P(m), we weight each P(m) with the corre-
sponding frequency value as follows:

qI = log
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P(m) f k1
m Δ f
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fm = (m − 1)Δ f , Δ f =
1
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where f k1
m is the weight function for P(m) and k1 is the user pa-

rameter to adjust the strength of weight at each frequency *5. The
above weighting is introduced to evaluate the occurrence of repet-
itive rapid motion-speed change, which enhances the impression
of being intense. We adopt qI as the first feature quantity.

Next, we derive the second feature quantity based on actual
frequency-domain characteristics. Figure 1 shows examples of
motion-speed time series and their power-spectrum characteris-
tics in the frequency domain. In the case of Charleston, the time
series shows a relatively simple and regular speed variation. Its
power spectrum gives a smooth shape having a single distinctive
peak. On the other hand, the time series of Salsa shows a com-
plex and irregular speed variation, and its power spectrum shows
an irregular uneven pattern. Although the time series of the Indian
dance also shows a complex and irregular waveform, the motion-
speed value varies more slowly. As a result, its unevenness in the
power spectrum is shown only in the low-frequency region.

The above characteristics suggest that motion complexity is
reflected in the smoothness/unevenness of the power-spectrum
curve. The smoothness/unevenness of a given curve can be eval-
uated by its curvature values. Therefore, we introduce the fea-
ture quantity below, in which the curvature of the power-spectrum
curve is integrated over the whole frequency domain, to evaluate

*5 The log transformation is used in the calculation of qI to cover a wide
range.
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Fig. 2 Feature-quantity distribution of Mocap data. In (d), (e) and (f), number of joints: J = 19 (waist
and hips are added), number of PCs in (e) (or SVs in (f)): k = 4, dimensionality of the feature
vector: 6 for (d), (3J+1)k = 232 for (e) and 3Jk = 228 for (f), and the symbol “?” means “difficult
to interpret.”

the degree of motion complexity:
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As in the case of qI, we weight each of the curvature values in
qC *6 at each frequency with the weight function f k2

m (k2: user
parameter to adjust the strength of weight at each frequency) to
enhance the difference in the distribution of uneven regions in the
frequency domain. It is reasonable to think that the complexity
and difficulty of motion sequence are higher as the motion fre-
quency is higher, i.e., as the motion sequence is more quickly
performed, and the above weighting conforms to this.

3. Results

This section presents the experimental results of the proposed

*6 The log transformation is used in the calculation of qC to cover a wide
range, as in the case of qI.

method. We use Mocap data open to the public [11], [12]. In
some data, periods in which the whole body is kept in a still state
are included before and after the actual performance. We remove
these periods and use only the part sandwiched between the n1th
and n2th frames (n1 and n2: frames first and finally satisfying
v(n) > 0.75vm, vm: mean speed). We compare the obtained re-
sults with those obtained by the other four conventional methods:
time-domain analysis [8], phase-plane analysis [6], kWAS [13]
and PCA Similarity Factor [14].

Figure 2 shows the obtained scatter plots of the Mocap data.
The feature-quantity distribution of 57 Mocap data selected from
8 motion categories was visualized. Each of the colored areas rep-
resents a motion-category region (estimated by the Bubble Sets
method [15]). (a) and (b) were obtained by the proposed method.
(a) was obtained by setting k1 = k2 = 0 in Eqs. (3) and (4), i.e.,
without the frequency weighting, whereas (b) by setting k1 = 2
and k2 = 1, i.e., using the adjusted frequency weighting (adjusted
by trial and error). In (a), the areas of several motion categories
overlap. On the other hand, there is no overlap in (b). This sug-
gests that the frequency weighting is actually effective in extract-
ing motion characteristics specific to each motion category.
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Table 1 Evaluation of grouping charadteristics in the scatter plots.

Proposed Time Phase PCA
method domain plane kWAS Similarity

(k1 = 2, k2 = 1) analysis analysis Factor
DB Index 0.494 0.758 1.293 0.651 1.801

Emprical 1.000 0.877 0.754 0.965 0.825Accuracy

(c) in Fig. 2 was obtained by the time-domain analysis, which
provides two feature quantities almost identical to those of the
proposed method (i.e., intensity and complexity) [8]. Multiple
motion-category overlaps are seen in (c). This incomplete group-
ing was probably caused by the fact that each of the frequency
values was not explicitly weighted in the time-domain analysis,
and thereby motion characteristics specific to each category was
not sufficiently evaluated.

(d), (e) and (f) in Fig. 2 were obtained by the phase-plane anal-
ysis, kWAS and PCA Similarity Factor, respectively. These meth-
ods extract a multidimensional feature vector from each of the
Mocap data (dimensionality: (d): 6, (e): 232 and (f): 228). The
distribution in a multidimensional space was projected on a two-
dimensional scatter plot by a dimensionality-reduction technique
(PCA or MDS). In all of (d), (e) and (f), multiple motion-category
overlaps, i.e., incomplete groupings, are seen. As for the coordi-
nate axes of the obtained scatter plots, it was difficult to explic-
itly interpret their meanings, especially in the cases of (e) and (f)
in which extremely high-dimensional feature vectors were used.
Such a problem does not occur in the application of the proposed
method that provides only two feature quantities.

We quantitatively evaluate the grouping characteristics in each
of the obtained scatter plots. Specifically, we use the Davies-
Bouldin (DB) index defined as a function of the ratio of the
within-category scatter to the between-category separation [16].
A lower DB-index value means that the grouping is better. Ta-
ble 1 shows the results. The proposed method (with k1 = 2 and
k2 = 1) gave the lowest DB-index value, i.e., the best grouping.

To further verify the effectiveness of the proposed method, we
perform the leave-one-out cross validation [17] by applying the
1-nearest-neighbor classifier to each scatter plot in Fig. 2. In the
cases of (d), (e) and (f), the validation is done not in the mul-
tidimensional space but in the two-dimensional scatter plot. The
results are shown in Table 1. The proposed method gave the high-
est, i.e., best, empirical-accuracy value.

As shown in the above results, the proposed method gave bet-
ter characteristics than those of the other methods. This suggests
that the proposed method is more suitable for concisely visualiz-
ing the motion-characteristic distribution of multiple motion cate-
gories in a two-dimensional scatter plot, which helps easily grasp
the overview of the distribution.

4. Conclusion

The main contribution of this paper is to provide the feature
quantities suitable for concisely visualizing the overview of the
motion-characteristic distribution of a given Mocap data set, us-
ing a scatter plot. It is shown in the experiments that the deriva-
tion of the feature quantities by the frequency-domain analysis,
in which each frequency value is explicitly weighted, is effec-
tive. The derived feature quantities give better characteristics in

the grouping of multiple motion categories than the other conven-
tional methods. To clarify the application range of the proposed
method will be the subject of future work.
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