1F-02

1地点に多量のファイルが関連付けられる条件下での GIS の検討

廣重 法道 鶴田 直之

福岡大学 工学部 電子情報工学科†

1 はじめに

2013 年頃より数件の GIS (Geographic Information System) を開発してきた.

2016 以降に開発した熊本震災ミュージアム DB[1](以下、熊本震災 DB)では、写真毎に EXIF 内の緯度経度情報を紐づけたシステムであった.

最近取り組んでいるのは、例えば1つの観光 資源に複数の写真・ファイルや概要説明が紐づ けられるような、1地点に多量のファイルが関 連付けられる条件下でのGIS 開発である.

新システムを開発する中で、データベース (ファイル保持部) や地図ライブラリに関して、 見直しが必要となった. 開発途中での検討事項 を紹介する.

2 熊本震災 DB (ベースシステム) の基本構成

災害写真を収集・整理・公開することを主目 的としていたため「1 地点に1 写真・ファイルを 紐づける」仕様としていた.

熊本震災 DB はデータベース(ファイル保持部)に MOMD-GIS を、地図ライブラリに CesiumJS を利用した WebGIS であり、サーバ側は PHP、クライアント側は JavaScript にて構築した.

図1. 熊本震災ミュージアム DB

2.1 データベース

MOMD-GIS[2]は国際火山噴火史情報研究所が開発した GIS 向けのデータベースであり、MongoDB[3]をコアエンジンとして使用している.MongoDB が有する 1)写真・ファイルそのものを要素として格納する機能、2)SQL 系 DBMS よりも早くから対応していた JSON 機能などの利点を活かし、MOMD-GIS は緯度経度情報と紐づいた多様なファイルの格納・検索・メタデータ付加機能を提供している.また、ファイル実体とメタデ

ータを一括管理できるため、保守運用が容易で あるという利点も有している.

2.2 地図ライブラリ

2016 年当時は Google Map API が無料で利用できたため全世界的に利用されたが、2018 年頃に実質有料化となった. その時に多くの利用者が採用したのが CesiumJS[4]であった. CesiumJSは WebGL を利用した 3D 地図表示ライブラリであり、当時の国土地理院の地理院地図 Globe[5]もCesiumJS を採用したこともあり、我々もCesiumJSを採用した.

3 新システムの検討

3.1 基本構成

新 WebGIS システムでは「1地点に複数の写真・ファイルを紐づける」仕様を基本としている。また、2018 年ころから地図表示ライブラリは新たな OSS が広く使われるようになった。そこで、データベースや地図ライブラリについて、改めて基本構成を再検討した。

3.2 DBMS の選定

MongoDB は写真・ファイルそのものを DB の要素として格納できるという利点があるが、1個のみという制限があるため、新システムの「1地点に複数の写真・ファイル紐づけ」を実現するためには、地点毎メタデータを管理するテーブルが別途必要となり、MOMD-GIS の利点が活かせなかった。

また、2015年 10月に公開された MySQL5.7[6][7]ではネイティブ JSON 対応となり、この点についても MOMD-GIS の優位性が薄れた.

更に OSS のサポート体制の観点から見ると、MongoDB より MySQL/PostgreSQL の方が圧倒的に活況である. 近年は MySQL と PostgreSQL とが切磋琢磨しており、毎年の様に性能向上や機能改善を重ねている. 結果的に NoSQL 系の DBMS は離された感がある. また例えば MySQL はオラクル社が開発元であること、日本でもミドルウエアコンポーネントとして扱う大手ベンダーも存在していること、関連書籍が多いことなど、システムの長期運用を考えると活況のある MySQL の方が安心感を得られた.

以上の理由から「1地点の概要情報を MySQL に、実体ファイルをファイルシステムに保存する」方式を採用した.

3.3 データベースとファイル実体保持部

初期通信時にクライアント側に送信する情報を概要情報と定義し、1地点の概要情報はデータベースに登録する. 具体的には、緯度経度情報、地点名称、識別番号、概要説明などの情報であり、これらは本システムを活用するサービスに依存する.

1地点に対応する複数ファイルは、ファイル システム上で1つのフォルダに配置し管理する.

3.4 地図ライブラリ

2018 年 頃 よ り Leaflet[8][9] や OpenLayers[10]などの Web 地図用 JavaScript ライブラリも一般的となってきた.

CesiumJS は 3 次元表示が可能という利点はあるが、本システムでは特に重要ではない. 他の機能についてはほぼ同等であり、JavaScript のライブラリとして提供されているため開発効率も同等であった.

ただ、多量のプロット表示を行うとブラウザ の表示速度に差が見られたので測定し比較した.

3.5 CesiumJS と Leaflet との表示速度評価

多地点情報を読込みフラグを表示させる処理を実施し、表示開始から全地点が表示終了となるまでの時間を Chrome のデベロッパーツールにて測定した.

条件は以下の通りである.

ノート PC(CPU=Core I7-8650U、メモリ=16GB、Windows 10)、サーバ~ノート PC 間=1Gbps 有線 LAN、1地点データ=855bytes (緯度経度以外は全部同じ内容)

図2. CesiumJS 100 地点プロットの例

結果は表1のように、圧倒的に Leaflet が高速であった. 更に、CesiumJS は表示しておくだ

けで GPU 負荷が高く、更に地図の移動・拡大・ 縮小の操作をすると GPU 負荷ネックとなり、操 作性が低下した.

これらのことから、新システムではLeaflet を採用することとした.

表1. プロット完了までの時間(秒)

	プロット地点数				
	10	30	100	300	1000
CesiumJS	7.90	8.49	8.03	10.16	16.29
Leaflet	0.79	0.80	0.87	0.90	2.00

4終わりに

本稿では、WebGIS システム開発において、データの保持方式と地図ライブラリの選定に関する検討を紹介した.

検討事項をベースに現在システムの基本部分 を開発中である. 更にいくつかの応用サービス を開発する計画である.

謝辞 本稿は、公益財団法人福岡県建設技術情報センターとの共同研究「電子データの保管管理システムの開発」の助成を受けています. 深く感謝致します.

参考文献

- [1] 奥村勝・高橋伸弥・鶴田直之・鳥井真之・奥野充 (2015):火山露頭データベース 新たな知識基盤の構築 とその試作例.火山,60,349-356.
- [2] 奥村勝 (2016): MOMD API (v2.77) Document v1.0.
- [3] 小川原徳彦(2016): はじめての MongoDB (I・0 BOOKS). 159p. 工学社.
- [4]https://cesium.com, 2016
- [5]国土地理院 (2016): 地理院地図 Globe トップページ.
- [6] 奥野幹也(2016): 詳解 My SQL5.7, p362, 翔泳社.
- [7] 梶山隆輔・山崎由章(2016): MySQL 運用・管理入門, p295, インプレス.
- [8] Paul Crickard III (2014) : Leaflet.js Essentials,p156, Packt
- [9] https://leafletjs.com/,2018
- [10] 佐藤奈々子(2018): OpenLayners4 で遊ぼう,58p,インプレス.