V7MY LT THE 88—7
(1992, 11. 10)

WFULL EN— T B T 2 TR A % M 2 Fik

i JRH B~
liGhara.cs.keio.ac. jp harada®hara.cs.keio.ac. jp

BEBHRPRAN ML ER HEERIS SR
T 223 HUEW #ALR HE 3-14-1

" =

A== a— A OMEREE -+ ICIET IS, WFME 25 T DOREIREHEIIED Hh
TWwd, —fiz, T0Y 5 A0~ FITI3RE EOBIENEET S, V— T & dh e Uik
FHELUT, ELMTORBELEZIZE>T, V—TDMFHL% RS /~HIZ, Doacross &
IFEN S ASEIREINATVS, LU, BOIIHE2E3 207 TS DR BATS &,
ARLZFAPHI-RPEFEINDE LI RERDH B, ~BEN—7ORMITRAEREDH, 2EA—T
DBEIIE FPORAMEERDNS, AR TR SERMEMICS T3 AELRB 2MET 257
HEERT,

MXF—7—F WIHESEN—7, TREFAM, Rilift, 20515, $F7075307

Removing Redundant Synchronizations from N-nested Parallel Loops

Shiao-Chieh LEE Ken’ichi HARADA

li@hara.cs.keio.ac.jp harada@hara.cs.keio.ac.jp

Department of Computer Science, Graduate School of Science and Technology,
Keio University
3-14-1, Hiyosi, Kouhoku-ku, Yokohama, 223, Japan

Abstract

Abstract

Data dependences constrain the parallel execution of an imperative program and are typically
held by using synchronization instructions. Execution of these instructions occupies a significant
part of the overhead in the parallel program. Some of the data dependences in the program
may be redundant because they are covered by some other dependences. In a simple loop,
if a synchronization is redundant at one iteration, it is redundant at all iterations of the loop.
However, in nested loops, redundancy is not uniform. In this paper, we give a scheme of removing
redundant synchronizations from n-nested parallel loops.

#X key words N-nested parallel loop, Redundant synchronization, Optimization, Compiler, Concurrent programming

1 Introduction

A major problem with programming for multi-
processor has been that it is difficult to make full
use of the inherent parallelism. One solution to
this problem is the development of software sys-
tems providing programming environments and lan-
guages that {ree the user from the details of the ar-
chitecture. A key component of such systems is a
parallel compiler. Several language constructs such
as Doacross and Doall{l] have been designed to
control the parallel execution of loops. When a
loop is executed in parallel on a multiprocessor, syn-
chronization is needed to hold data dependences be-
tween statements executed in different iterations of
the loop by dilferent processors. Techniques to com-
pile loops for execution on multiprocessors were de-
veloped in [2],[3].

Data dependences (simply called as depedences,
below) constrain the parallel execution of programs.
The dependence structure of a computation can be
characterized by a directed acyclic graph (DAG),
where the nodes represent tasks and directed edges
represent precedence constraints. These dependence
edges correspond to explicit synchronization required
under asynchronous model of parallel execution. If
there is an alternate path from the source node of a
dependence Lo the sink node, then synchronization
instruction corresponding to the dependence from
source to sink is superf{luous because the occurrence
of the synchronization event through the alternate
path implies that the precedence constrains implied
by this edge is implicitly guaranteed.

The problem of recognizing and removing redun- .
dant dependences in simple loops with constant de-
pendences is studied by Midkifl and Padua[3]. Their
algorithni searchs for asequence of dependences that
can cover a given dependence. However, they only
showed removal of redundant synchronization from
simple loops, in fact, n-nested loop is often used in
the scientific computation. In this paper, we dis-
cuss the method for detecting redundant synchro-
nizations from parallel loops with a new algorithin
proposed by us in [4].

2 Removing of redundant synchroniza-
tions from nested loops
Because the direction of the synchronization is
inconsist in n-nested loops. The representation of

redundant synchronizations becomes more difficult.
In this section, we disscus how to charactrize the

redundant synchronizations, and to show the condi-
tions of deleting these synchronizations.
At first, we define the n-nested loop as follows.

DO 4 = Ly, Us
DO iz = LQ, Uz

DO in = Ln, Uy

S1 A(il-l-kl, iz+’cg,...,in+kn)=
52 o =A(iy+hy, datha, . inthy)
ENDDO
ENDDO
ENDDO

In this loop we say that there is a dependence lock
<(iy+kyiatka,.yint k), Gi+hy, datho,intha)>,
between S1 and S2. This dependence lock is repre-
sented as a dependence in the iteration space. Iter-
alions of a simple loop can be mapped onto discrele
points on a line. Hence, a simple loop with n it-
erations is represenied by points 1 to n on a line.
Similarly, the iterations of an n-dimensional nested
loop can be mapped onto discrete points in an n-
dimensional space. Based on the shape of the it-
eration space, nested loops are classified into three
types: regularloop, triangleloop, and irregularloop.
An example of each of the three types is given in
Fig.1. In the case of a regular loop the number of
iterations in the inner loop is independent of the
outer loop iteration. If the number of the iterations
in the inner loop is a linear {unction of the iteration
number of the outer loop, then such loops are clas-
sified as triangle. In an irregular loop the number of
iterations in the inner loop is a non-linear function
of the iteration number of the outer loop.

DO =1, m
DO iy =1, ns
DO 1:3 = 1, ng

ENDDO
ENDDO
ENDDO
a) Regular loop

DO =1, m
DO iz: 1,(1,*1:1+b
DO i3=1,c*i1+d*i2+e

ENDDO
ENDDO

ENDDO
b) Triangle loop

DO i] = 1, ny,
DO iy = 1, b[iy)
DO i3 =1, C[i1]+d[ig]

ENDDO
ENDDO
ENDDO
¢) lrregular loop

Figure 1: Types of nested loop

When we view nested loops as points in an n-
dimensional space, The indez vector of an iteration
gives the coordinates of the corresponding point in
the discrete Cartesian coordinate system. A point
in an iteration space can be viewed as a vector de-
fined by the line connecting the origin of the coordi-
nate system to the point. We use the notation p; to
denote a point and P; to denote the corresponding
vector. The dependence distance of a iteration de-
pendence is given by subtracting the iteration vector
ol the source of a dependence from that of the sink.
Hence, a dependence distance of a nested loop is a
vector in n-dimensional space. The same as a sim-
ple loop, for any point p;, and dependence distance
vector d;, the adjacent point of p; due to the depen-
dence is given by vector of I} + d;.

Without loss of generality, we can assume that
the lower bound of every loop control variables of
loops is one. First, we will consider loops that have
regular iteration space, that is upper bound of iter-
ation are independent loop. In the next, we define
dependence distance vector.

DOl =15
DOJ=15
ALY =
o= AL J43)
= A(I+1, 3-4)
o= AL J-1)
ENDDO
ENDDO

In this loop, there are three dependence locks.

il

Dependence distance vector (0, 3)7 is respect to flow
dependence lock < (I,J),(I,J + 3) >, (I,-)7T
is respect to dependence lock < (4,J),(/ +1,J —
4) >, and (1, —1)7 is respect to dependence lock <
(£,J),(I+1,7—1)>. In generall, an n-dimensional

dependence distance is a n-dimensional vector of

subtracting dependence source from dependence sink,
For examnple, corresponding to the dependence look

<(1:1,i2,..., i,,), (il-l-hl,ig-th,...,i,,+hn)>, the de-

pendence distance vector is (h1,hs,...,h,). Because,

the dependence distance vector represents the rela-

tion of a dependence lock, we say dependence dis-

tance vector as dependence vector for short.

) ‘ (643703 "
w
(L9=(L240.3)
s |
vi=(03)"
4 v (i)
" vz Be(1)T
3 F “3)* v3=vl+v2

v2! \
v3
2
&)
N
s Y @=L
I !

! 1 ! 1
1 2 3 4 5

T
*(5,2=(4,3)+(1,-1)

Figure 2: Dependence of n-nested loop

Unlike simple loops, redundancy of a dependence
is not uniform in the iteration space of n-dimensional
space. This means that if a dependence vector was
redundant at one point in the iteration space, we can
not conclude that this dependence vector is redun-
dant at each point in the iteration space. We show
this fact in the Fig.2. In this situation, (1,—1)7 is
redundant at point (1,2), but it is not redundant at
point (4, 3).

Before we define the redundancy of dependence
in n-nested loops, the bound of loop, botlom,top are
defined as follows:

Decfinition 1. The relation between two points in
the iteration space, <I and > are defined as:

o The relation p; < ps between two points p; and p;
can be obtained, if and only if Py; < Py; (1<j<n),
where (Pr1,P12,...,P1n) and (Py1,Pa2,..., Py,) are vec-
tors representing points p; and pe, respectively.

o The relation p; B> ps between two points p; and p,
can be obtained, if and only if Pi; > Pa; (1<j<n),
where (P11,P13,...,P1n,) and (Pa1,Pag,...,Pan) are vec-
tors representing points p; and pg, respectively.

The bottom and lop are these points such that
each p in the iteration space can be characterized
by p B botlom and p < top. i.e. bollom and top
respectively be the points representing the first and
last iterations of a regular loop.

We define a redundant dependence of a n-nested
loop as follows.

Definition 2. Let A = {d;.ds,....d,,} be the set
of dependence vectors. An outgoing edge due to
dependence d;, 1<i<m is redundant at point py, if
and only if
L. di = djy + dia + ... + din, where dj; € A

and d; # dij for all 1<j<n.
2. 1’1—1-21.:1 dir B botiom for all 1<j<n.
3 P+ dig S top for all 1<5<n.

The first condition states that there is an alter-
nate path in a regular graph of unbounded size. The
second and third condition guarantee that the path
is in the bounded iteration space. Let us consider
0,3)T. (1,-0)7, (1,-17.
The dependence vector (1,~1)7 is redundant in an

the dependence vectors

unbounded iteration space. However, it is not al-
ways redundant at each point in the bounded iter-
ation space.

Now we claim that if all the components of any
dependence vector are non-negtive and if a depen-
dence vector is redundant at any point then it is
redundant at every other point.

Theorem 1. If none of the dependence vector of a
n-nested regular loop has negtive components then
the redundancy of a dependence vector at any point
of the S_ISDG implies its redundancy at all points
ol the S_ISDG.

Proof: Let us assume that the dependence d; is
redundant at point py. Let p2 be an arbitray point.
Let P; and Py be the vetors representing the points
p1 and pa, respectively.

Case 1: Py + d; b top

This implies that the edge corresponding to the
dependence d; does not exist at point p;. Hence,
the theorem is obviously true.

Case 2: Py + d; 4 bottom

Because all the components of any dj; are posi-
tive, it is not possible to appear. Hence, the theorem
is obviously true.

Case 3: boltom Q Py + d; 4 top

Let dependence d;=d;;+d;z+...4+d;,, at point py
be redundant. Let 3j=Z'L=1dih: 1<j<n. Since
all the components of any d;; are positive, 5,
54, (1<p<q<n) is satisfied. Because py I Pa+sj,
(1<j<n) and p2 B bottom, condition two is true

al every point. Because Pa+3, < top and Pa+ts;
< Pa+s, (1£7<n), condition three is true at every
point. Hence,ihe theorem is true. .o

However, when the component of dependence vec-
tor is negtive, It is more diflicult to delete redundant
synchronizations from n-nested loops. Because re-
dundancy is not uniform at every points in the it-
eration space. We have showed an example at Fig.
2. Since adjacent point is beyond the bound of the
iteration space al some points, even if one synchro-
nization can be deleted from node 1, it can not be
always deleted fron any point in the iteration space.

Without loss of generality, the 2-dimensional it-
eration space with negtive components will be dis-
cussed. In this situation, since a redundancy is not
uniforin, we give the concept of local optimization
of synchronization. It means that when code opti-
mization is begin done, a redundant synchronization
code is deleted from some area of the iteration space.
We say this optimizing technique as local optimiza-
tion of synchronizalion. It is important that how to
decide the range of optimizing area. At first, a pat-
tern of synchronization with negtive components in
dependence vector is given in Fig.3.

DOI1=1,IN
DOJ=1,JN
. ('L_l)T

ENDDO
ENDDO
The dependence vectors are (-1,-1)7, (0,-2)7, (3,4)T

and (2,1)T here.

J
N=9
2
7 Dv
T
Vi=(34)
Va=(Let)
res va Vi) T
va=1k
1
I

51T=6 7 IN=9

Figure 3: A pattern of negtive components

In Fig.3, we found that in the iteration space
1<i<I” and 1<j<J’, a redundant synchronization
can be deleted at any point, because adjacent points
of any point are in the 2-nested loop iteration space.
For analysing area bound, some definitions of syn-
bols are given as follows. Let A be the set of depen-
dence vetors, di be a dependence vector, dj, = dj,;
+ dia + o+ di and diy = (g, i). We difine
im and jm are the sum of positive distance of de-
pendence vectors, in and jn are the sum of negtive
distance of dependence vectors.

im = Z;l__:li“, iy >0,

Jm =30 ki, du >0,

in =30 ligl, ik <0,

gr= 3o bkl Ju <0,
Next, we present a sufficient condition for the bound
of uniform redundancy.

Theorem 2. Let im and jm be the longest pos-
itive distances of dependence vector, in and jn be
the longest negtive distances of dependence vetor,
lop=(IN,JN). If imm > in and jm > jn, in the
iteration space 1<IKIN —im, 1<J<JIN — jm, re-
dundancy can be deleted from any point.

Proof: Let dependence di= djj+diz+...+dip at
point p; be redundant. sj=2';,=1d,-k (1<k<n) and
p2 be the point in the local area. we divide the {
di1, dia,... , din } to two parts such that in the first
part, { di1, dia,... , dit } are positive, in the second
part, { dig1, ditgz,... , din } are negtive. s; is such
the pass, which consists of diy+diz+...+dil at first,
then 8; = i+ dipi+dige+...+din. Beause py in
local area, Zj-:l 1of dij < im and 22:1 Joldi <
Jjm, botlom <1 Pa+d; <iop. Because imm > in and
jm > jn, 0 < Z}L=1 iof dij and 0 < z;';l J of
di; are true, bottom < 1’2—1—2;;135 < top. Hence,
redundancy is uniform at every point in the local
area. a

Generally, when some of the components of de-
pendence vectors are negative, according to the The-
orem 2, we can delete the redundant dependence
from alocal area. Next we present a sullicient condi-
tion for the uniformity of a redundancy in a bounded
S_ISDG. The following notation is used in present-
ing it. A dependence vector d; is denoted by its
components (Ci;, Ci2)7. Let, A= {d;,do, ..., di} be
the set of dependence vectors. We define pq. as
Maz(Max(ci2|1<i<m),0). That is, ppar is equal
to zero if the second component of all the depen-
dences. Similarly, npmi, is defined as Min(A in({c;2]

1<i<m}),0). That is, ny, i1s equal to zero if the
second component of all the dependence vectors is
positive, otherwise, it is the minimun of the second
component of all the dependences. We define an,,in
as the absolute value of a ny;,. In a doubly nested
loop is greater than or equal to the sum of pyq. and
@Nmin, then redundancy is uniform throughout the
iteration space. Belore proving this, we prove the
following lemma.

Lemma 1. Let p; be a point in a regular rect-
angular iteration space of width ppag + @nmin and
8i = Y p_, €k, where n > 1 and e;; €A not necessar-
ily distinct. From any point within the rectangular
grid, i the adjacent point due to s; is within the
grid, then there exists a path of length n given by
a sequence of adjacent points in the grid that cor-
responds to some permutation of €} s.

Proof: We prove this using induction on the
length of the path, that is the number of €}, s. Let
p2 be the point given by Py + s;.

Basis: When k is equal to one, s; is equal to e;;.
Since k is equal to one, there is only one permuta-
tion and the path is given by py, pa.

Hypolhesis: Let us assume that for any s; = 234:16“-"
[>1 then there exists a path from p; to ps given by a
sequence of adjacent points in the grid and that this
sequence s determined by a permutation of e;js.
Inductive step: Let us consider the case 8; = Eﬁ;‘leik,
>1.

case 1: All the ¢;;28 are positive. Since pz Is in
the grid, Ziflc,-kggwidth This implies that there
exists a point ps in the grid and an e;; such that
Ps + e;; = P, Since vector addtion is commuta-
tive and the length of the path from p; to p3 is [,
by induction hypothesis there is a path of adjacent
points from p; to ps in the grid.

case 2: All the ¢;p28 are negative. Proof is very sim-
ilar o case one.

case 3: There is at least one positive ¢;;28 and one
negalive cjpps. Let Py = (cPap,cPag)T is the vec-
tor representing point ps. Suppose cPyy<ppas, We
can find a point pz such that P; + e;; is equal (o
% and ejrp < 0. The ¢P3a<pmas + anm;y, because
cPoa<Pmaes and the ang,;, is less than the width
of the grid. The point p3 is in the grid because
cPyy > 0 and cPy1>els;. From the induction hy-
pothesis there is a path of adjacent points within
the grid from p; to pp and it corresponds to a per-
mutation of ef,s.

When ¢Pay > ppar we can find a e and a point
pa such that Pa+e;p is equal to Py and ejrn > 0. The
cP3y > 1 is true, because ¢ > pmar. The point
p3 is in the grid because ¢P’1y > 0 and ¢l >cPs.
Fromt the induction hypothesis, there is a path of
adjacent points within the grid from p; to py and it
corresponds Lo a permutation of e} s. u}

We show that when the width of the rectangular
iteration space is greater than or equal to the sum
of Prar and angmy,. 1If an edge is redundant at a
point in an S_ISDG then it is redundant at every
other point.

Theorem 3. If a dependence edge is redundant
at a point of the S_ISDG of a rectangular two di-
mensional loop and the width of the iteration space
1s greater than p,,q- + an,i,, then it is redundant
at all points.

Proof: Let us assume that the dependence d; is
redundant at point p;. Let py be an arbitray point.
Let P, and P, be the vectors representing the points
pi and py, respectively.

Case 1: > + d; B top

This implies that the edge corresponding to the
dependence d; does not exist at point p;. Hence,
the theorem is obviously true.

Case 2: Py + d; < botlom

Because all the components of any d;; are posi-
tive, it is not possible to appear. Hence, the theorem
is obviously true.

Case 3: boltom Q Py + d; < fop

The condition one for the redundancy is vacu-
ously true. Let ps .be the adjacent point of py by
distance d;. Since the width of the iteration space is
greater than or equal to sum of py,ar and ang,g,, we
can always find a rectangular grid, region of width
equal to sum of ppaer and an,,, enclosing py and
p3. From Lenuna 1 there exists an alternate path
in the selected region from point ps to ps. Hence,
conditions two and three of redundancy are satis-
fied. Therefore the edge due to dependence d; is
redundant at any point ps. 0

Al above, we have given some theorems about
how to delete redundant synchronizations from a
regular loop. In fact, there are a lot of triangle loops
and irregular loops in the scientific calculation. It
is can be proved that when all components of de-
pendence vetors are positive, the redundancy can
be deleted fron all points in triangle loop iteration
space. Before Theorem 4, we prove the following

lemma.

Lemma 2. If none of the dependence vector of a tri-
angle loop has negtive components, let p; be a point
in a triangle iteration space and s; = Y i e,
where n > 1 and €;;€A not necessarily distinct.
From any point within a triangle , if the adjacent
point due to s; is within the triangle, then there
exists a path of length n given by a sequence of
adjacent points in the triangle that corresponds to
some permutation of e}, s.

Proof: We prove this using induction on the
length of the path, that is the number of ef;s. Let
p2 be the point given by Py + s;, and p; = (i1, j1),
p2 = (42, 42), po = (ia,J1), we will prove that the
path is in the triangle Apop;ps .

Basis: When k is equal to one, s; is equal Lo e;;.
Since k is equal to one, there is only one permuta-
tion and the path is given by py, ps. It is clear that
s; is in the triangle Apopipa.

Hypolhesis: Let us assume that for any s; = ZL:IGM,
{>1 then there exists a path from p; to p» given by a
sequence of adjacent points in the triangle Apop;ps
and this sequence is determined by a permutation
of e;s.

Ik+=11 ik,
>1, here s; is denoted by its components (C;y, Ci2)7.
Because Zi‘;}c,;l is equal to is, Z;:}C;‘g is equal
to jg, and P; + 8; = pa. We can {ind a point
p3 = (43, J3), which is in the triangle Apop;p2, and
an e;; such that Ps + e;; = Pa.Since vector addtion
is commutative and the length of the path from p,
to p3 is I, by induction hypothesis there is a path of

Induclive step: Let us consider the case s; =

adjacent points from p; to ps in Apepipa. u]

Theorem 4. If none of the dependence vector of a
triangle loop has negtive components, then the re-
dundancy of a dependence vector at any point of
the S_ISDG implies its redundancy at all points of
the SCISDG.

Proof: Letl us assume that the dependence d; is
redundant at a point. Let p; be an arbitray point.
Let I’ be the vetors representing the points p;. Be-
cause d; = Z;}:]
alternate path in the selected region corresponding
to point p; and P;+d;. The selected region is in

d;;, from Lemma 2 there exists an

the triangle iteration space, therefore, the alternate

pathol d; = 37

i=1
space. a

d;; is also in the triangle iteration

—54 —

In some situations, we must apply the local op-
tiniization to some areas, because the dependency
is not uniform. we can not give a theorem which
represents a method of deleting redundant synchro-
nizations from all triangle loops and irregular loops.
Now, we give a theorem for triangle loops. It shows
a method of analysing redundant synchronizations
in triangle loops and irregular loops. The following
triangle loop (called A — triangle loop for short)
is used in representing it.

DOI=1,N
DOJ=1l,axI+b
a=(1-M)/(N-1),
b=(MN—-1)/(N—1).
ENDDO
ENDDO

J

N

Figure 4: The pattern of A — triangle loop

Theorem 5. If a dependence edge is redundant
al a point of a A — triangle loop and (1/2)(MN —
1)/(N —1) is greater than pyper + 6701y, this redun-
dancy can be deleted from (1/4)(MN — 1)2/((M -
D(N — 1)) points of the S_ISDG at least. The ra-
tio of deleted dependences among all points is (1/2)
(MN = 1)2 [(MN(M = 1)(N - 1)).

Proof: In a A — triangle loop iteration space, a
largest rectangular area can be found. Assume this
area as the local area of optimization. In Fig.4, the
number of iterations in a rectangular is 7 * J'.

S=U'sJ' =1s(ax] +1b)
=axI"?4bx]
(L= M) /(N =117 +
((MN —=D/(N—-1)I'
It is clear thal when I’ = —b/(24a), the rectangular
is the largest,
I'= (1/2)(MN = 1)/(A = 1)

J = (1/2)(MN —1)/(N — 1)
from theorem 3, when J’ is greater than ppmas +
aNmin, b6, (1/2)(MN=1)/(N —1) > Pmaz+0nmin,
the dependence at all points in this rectangular can
be deleted. Therefore,the number of dependences
which can be delete at least from S_ISDG is (1/4)
(MN — 1)2/((1\1 - 1)(N ~1)).

The total number of points in a A — triangle
loop is (MN)/2, the ratio of deleted dependences
is 2I'J' [(MN), ie., (1/2)(MN — 1)2/(MN(M —
(N - 1)). O

Theorem 5 means that we can find a largeset rect-
angular and regard it as a local area [or the local op-
timization in a triangle loop or a irregular loop. In
a A —iriangle loop iteration space, when M and N
are much larger than one , a redundant syncroniza-
tion can be deleted from more than a half of number
of points in the S_1SDG.

According to the theorems, we delete redundant,
edges [rom n-nested loops. Let A be the set of de-
pendence vector. A = { dy,dy,..., dyp }. Let d;
be any dependence vector. d; = (471, %52, ijn)
Let maz; be the maximum of the number [sub-
script of dj. maz = Z;’;] i1, 45120, At first,
we construct a subgraph Subg(bottom) rooted at
bottom. The bound of Subg(bottorn) are from 1 to
maz, 1<I<n. According to the relation of depen-
dence, dependence edges will be represented in the
Subg(bottom). Let node 1 be botlom = (1,1,...,1),
we apply the V_DFS algorithm at node 1, a span-
ning tree corresponding to the subgraph of S_ISDG
will be created. Due to the node 1, deleted edges
areredundant edges. Dependences corresponding to
these deleted edges can be deleted from every points
in the iteration space or local area of the iteration
space.

3 Conclusions

Previous work considers only simple loops, whereas,
we have investigated and characterized redundant
synchronizations in n-nested loops. This algorithm
can be implemented as a phase in parallel compil-
ers. The reduction in parallel execution time is de-
pendent on the type of synchronization primitives
avaliabale and the scheduling scheme.

Some theorems are presented for deleting redun-
dant synchronizations from n-nested loops. The
methods of deleting them from triangle loops also
lhave been shown. According to theorems, the scheme
using S_1SDG is proposed. One of the technique

— 55—

proposed for execution of loops on a distributed
memory computer is iteration space tiling. The tile
size is dependent on the dependences. Elimination
of redundant dependences in the S_ISDG can po-
tentiallly reduce the tile size and increase the con-
currency. This scheme is also applicable for pre-
synchronized scheduling on share memory multi-
processors. We have also verified the correctness
of this algorithm with 30 loops in the simulating
enviorment.

References

[1] Cytron,R.G.: Compiler-time Scheduling and
Optimization for Asynchronous Machines,Ph.D.
dissertation, Univ. Illinois, Urbana-Champaign,
DCS Rep. UIUCDCS-R-84-1177, Oct. 1984.

[2]Padua,D.A., Kuck,D.J.,aud Lawrie,D.H.: High-
speed Mulliprocessors and Compililion Tech-
niques, {ILEE Tran. Comput, Vol.29, No.9(1980),
pp.763-776.

[3] Midkiff,S.P., and Padua,D.A.: Compiler Al-
gorithms for Synchronization, IEEE Tran. Com-
put, Vol.36, No.12(1987), pp.1485-1495.

[4] Lee,S.C., and Harada,K.:An Algorithm for
Deleling Redundanl Synchronizaiions from Par-
allel Loops, 9th Conference Proceedings Japan
Society for Software Science and Technology,
pp-489-492, 1992.

—
51

] Wolfe,M.J.: Optimizing Supercompilers for
Supercomputers, The MIT Press, Cambridge,
1988.

[6] Tarjan,R.: Depth First Search and Linear
Graph Algorithms, SIAM J. Comput, No.1(1972),
pp.146-160.

