V7 =715 89-21
(1992 12 16)

INICBIFT A — ¥ 20Ty 7 HIENE % HIHE 3 550451
EFH L REEFEDRE L EiE

Y IESA, PUE BIE. Ak BT, kAR
HABEEFHAEE V7 o= TR

A¥7YYxv biy FT7—=2 (IN) T, AREY—E2 e MFESBOMREH
PERT 2L %2720, Y- EXADEEREED D Z EFERICEETHS, NT
TARELTWDL INEFVTIH, y—EREF, WEY) Y -2 MR LEZF TV 2
s P THBEEY V- (VR) 2BETHI LI E o TEBEND, AL T, ¥—
EAZEMRT 5. VROBEIEFFIOE L S #RIET 72010, ESYE, 5547%. T
EHD, 300 —-ECAOWMEERET S, T/, INOLEBHNHIHRETZHEE, &
NEFERLLZY - VE20THET 2, COKFECL), BEEOECINS-EX

P, EAHETHETE A LM S NS,

A VERIFICATION METHOD FOR SERVICE SCRIPT
OF THE INTELLIGEN T NETWORK

MASAHIRO HORI, MITSUTAKA ITO, YUJI FUKUNAGA and TSUTOMU NAGAISHI

NTT Software Labratories
NTT Shinagawa TWINS Bldg. 1-9-1 Kohnan Minato-ku Tokyo 108 Japan

The current verification methods used for the Intelligent Network (IN) are based on communicating process
technologies. In this paper, an IN model is examined to study verification technologics which come from the charac- -
teristics of the model. In the proposed model, the IN architecture abstracts physical resources in the transport net-
work and a Service Logic Program (SLP) controls the virtualized resources (VR) to achieve IN services. The charac-
teristics of SLP control over the virtualized resources are examined, the verifications are classified, and a verifica-
tion system is developed. Using this verification system, IN services high in quality and reliability can be achieved

even by inexperienced programmers in a relatively short time.

—163—-

1. Introduction

1.1 Importance of Verifications of IN
services

Currently, the IN concept is being extensively stud-
ied with the aim of developing more intelligent
network services and providing high quality intelli-
gent telecommunication service in the near future.
Against this background, verification technologies
have emerged to play a very important role in the
quick development of high quality, reliable IN serv-
ices. The verification technologies currently in use
arc based on general communication models and so
do not use the special properties of IN models. In this
paper, we report an improved verification technology
that uses the characteristics of an IN model, making
it a better verification technology for IN application
to service.

1.2 The IN model

In this section, we describe the proposed IN model
based on [3],[4].

An IN-Service

Service Control
Layer

O sLp
CO VR

® controlled point

uncontrollable
termination function

line

<> control

Fig.1 Relationship between SLP and VRs

1.2.1 Abstraction of Physical Network

In this model the concept of virtualized resources (VR) is
introduced. VRs are abstractions of control points in a
transport network. The relationship between VRs and on
an SLP is illustrated in Fig.1. Each VR is represented by
abjects which are defined by the finite state machine
(FSM). The SLP describes services by controlling these
VRs. One SLP existing in a logical network and control
VRs are basically executed in one process to achieve one
service. In other words, an SLP will not interact with an-
other SLP to achieve the service.

1.2.2 Properties of VRs

VRs are conceptual resources which include the physical
resources in the transport network. From the definition of
VRs, we can conclude that VRs have the following prop-
erties.

P1: VRs are defined by FSM.
P2: State transitions are not initiated through the com-
munication path that exists between two or more entities.

P3: SLP and VRs communicate asynchronously.
2. Classitication of verifications in IN
2.1 Special Properties of IN services

In describing IN services, an SLP creates, joins, splits
and frees many VRs. The most difficult problem in
writing an SLP is managing the status of VRs, which
changes according to service status. Inexperienced SLP
programmers who do not know the VRs' state transition
are especially prone to making mistakes in using VRs
when writing an SLP. In the IN concept, since an SLP is
open to a customer, errors are likely to be committed
frequently. Therefore, a verification technology which
takes the SLPs' control part into consideration is most
effective for achieving IN services. More concrete, under
the condition that the FSMs of VRs are correct, we check
that the state transition of all VRs resulting from the SLP
control information are consistent with the VRs' FSM
definitions.

—164—

2.2 Verification

Taking the properties described in 2.1 into consideration,
we classify the verifications which are difficult to check in
writing SLPs and which the services must obey. The
results can be summarized as follows:

2.2.1 Consistency

This property refers to the fact that all the signals which
the SLP sends to VRs must be accepted by the appropriate
VR. In our verification technology, we check whether the
SLP sends the signal to a VR that can process the signal
according to the state transition map.

Seize (x0)

(1)Hunt signal
must be sent
before Join
signal is sent

Fig 2 (1) Consistency

Completeness

Join (x0, x1)

2.2.2

This property refers to the fact that all the signals
which VRs send to the SLP must be processed by
the latter. In our verification technology, we check
whether all the signals the VRs send to the appropri-
ate SLP processes are defined in the SLP.

2.2.3 Non-Redundancy

This property refers to the fact that each processes
described in the SLP must correspond to some signal
sent to it by a VR. In our verification technology,
we check whether or not the SLP has any non-
executed codes.

3. Strategies

3.1 Assumptions and Limitations
for Efficient Verification

For practical verifications, we assume the following
properties of VRs are added to the three properties
described in'1.2.2. These assumptions make the
model precise, but do not affect its practicability.

P4: The signals which are sent by an SLP process
are never lost.
P5: The VRs are controlled by only one SLP.

For further discussion, we define the states of an IN
service as follows:

Def: The state of an IN service is defined as an n-
tuple (s1, s2,, sn), where s1, s2, ..., sn are the
states of all VRs controlled by the SLP in the
service. The state of an SLP transits to the next state
when the SLP executes a control to VRs.

Create (x1)

\
% not be received at this state

(3) Free_Ack signal must

i

(x1) (x1)

1 y/ 4 1
>Create_Ack >Create_Nak >Fr’ee_Ack

\, DISC (x0)

(x1) (2)DISC signal

l l

&

! V{7 'may be received at
: this state /

Fig 2 (2) Completeness and Non-Redundancy

—165—

To avoid the rapid increases in the number of states of
the IN service when the SLP has loops, the service to be
verified must satisfies the following condition:

P6: When the SLP of an IN service has loops, the states
of the IN service, i.e., the n-tuple of VR states, at any
points in the SLP are always exactly the same independ-

ently on the number of iterations of loops to be executed.

From the P6, we can ignore the increase of states caused
by existence of the loops in the SLP and the verification
procedures become easy.

In practice, this constraint results in no scrious loss in the

ease of describing the SLP of IN services.
3.2 Verification Method

VRs are entities that communicate to the SLP. They are
considered a kind of process with the properties outlined
in P1 to P5. Thus, the verification of service can be con-
sidered as the verification of a protocol shared among
several individual processes. This, however, is not a
practical method because the number of global states
increases sharply if the number of VRs is increased.

We therefore use the following method to verify IN
service. First, we pick up the point at which the control
flow branches and point at which the SLP executes con-
trol to the VRs, and make them a state transition tree.
Second, we trace the tree and compare it with the state
transition maps of the VRs. Finally, we verify the cor-
rectness of the SLP using the criteria described in 2.2.1
t022.3.

Table 1. Functions of Parts of Verification System

part functions
front | interprets SLP written in SDL/PR,
end | and creates state transition tree
back | traverses the state transition tree, compares it with
end | state transition maps of VRs, and verifies it.

stores data used by the front and back ends, such as|
DB |state transition maps, different sorts of control
signals, and so on.

4. System Overview

Our system for verifying the properties described in
2.2.1t02.2.3 is shown in Fig.3. This system, which
is described in C language and runs on Unix, consists
of three individual parts : the front end, the back end,
and the DB. The front end interprets a given SLP
program written in SDL/PR and creates a state transi-
tion tree. The back end traverses the state transition
tree, compares it with state transition maps of VRs
stored in the DB, and achieves verifications. The DB
stores data used by the front and back ends, such as
state transition maps of the VRs, different sorts of
control signals, and so on. With this structure, we can
easily deal with any other SLP representation, such as
C language, by replacing the front end corresponding

to that representation.

Service Logic Program
(SDL/PR source program)
Q

. A State
Transition Tree

LLResuIts of Verification

Fig.3 Overview of SLP-VR Verification System

4.1 The Front End

The front end interprets an SLP program written in SDL/
PR and creates a state transition tree. This tree consists of
state nodes, including a pointer to the state to be transit to
and a list of control signals sent to VRs at that state. In
this phase, both the VR control points and the SLP
control flows, such as branches and loops, must be
considered.

—166—

4.1.1 VR Control Points

The control signals sent to VRs are represented as either
OUTPUT clauses or INPUT clauses in SLPs written in
SDL/PR. The front end picks up the signal names that
follow those keywords OUTPUT and INPUT and ap-
pends them to the signal list if they are control signals to
the VRs.
4.1.2 The Control Flow of the SLP

The control flow of the SLP may branch either when the
SLP receives the signals from the VRs or as a result of
internal variable conditions. The former is represented as
INPUT clauses, and the latter as a DECISION clause.
The latter corresponds to transitions of the state of an
SLP, and it is in this case that the state of the SLP is
clearly described in the STATE clause as an SDL. pro-
gram. In the former case, it is not. In either case, state
nodes are created.

stale 'STO"
STATE ST0;

INPUT Initial_Yriger; ** : Initial_Triger
OUTPUT Seize_a_Leg (x1); x1:Seize_a_Leg
DECISION result;

oK state ‘imaginary-No. 1"
OUTPUT Free(x0); C .
OUTPUT Release (x0); x1:Create_and_Join
STOP, %0 : Cleate_and_Join

OUTPUT Create_and_Join (x0, x1);
OUTPUT Release(x0);

NEXTSTATE STt
(state 'STZ)
STOP,

END%
STATESTY;
Fig.4 Transformation from SDL representation
to State Transition Tree

NG:

INPUT C_J_Ack{x1);
NEXTSTATE ST2,

INPUT C_J_Nak(x1,x0);
OUTPUT Free(x0);
OUTPUT Release(x!);

4.2 The Back End

In this part, the state transition tree is traversed, compared
with state transition maps of VRs stored in the DB part,
and verified.

4.2.1 Traverse of State Transition Tree
The traverse of the state transition tree created by the
front end part starts from the initial state of the SLP and
proceeds by the depth-first-search method. One of the
branches is selected to be traversed next in order of ap-
pearance in'the SLP. If either the end of the tree or a
loop structure is found, the system backtracks to the
nearest branch. Every state node has a flag which holds
the state to traversing the subtree. The flag may be in
one of three states : 'not-traversed', 'in-traversing', or
‘complete’. Loop structures of SLPs may be found when
the flag is either in the 'in-traversing' or ‘complete’ state
in traversing the trce.

4.2.2. The Verifications

In traversing the tree, all VR states are traced and
stored in the list included in the state node. At every
state node, the following verifications are carried out.

(1) Consistency

In traversing the tree, the consistency of the SLP is
verified by comparing the current state of every VR and
the state transition maps of VRs stored in the DB part.
If a signal that can not be accepted in the state transition
maps is sent to the VR, it is reported and the verification
is continued.

(2) Completeness

The completeness of the SLP is verified in the follow-
ing way. First, all the signals that may be sent to the
SLP by every VR in the current state are picked up from
the state transition maps of VRs. Second, the tree is
checked to verify whether or not all branches corre-
sponding to the signals exist. If all the branches are not
found, it is reported and the verification is continued.

(3) Non-Redundancy

The non-redundancy of the SLP is verified in the fol-
lowing way. All the branches of the tree in the same
state are picked up and compared to the state transition
maps of VRs. If branches which were never executed
are found, it is reported and the verification is contin-
ued.

—167—

4.3 DB part

The DB holds the data of the state transition maps of
VRs, different sorts of control signals, and so on. Itis
invoked by both the front-end part and back-end part.
The state transitions of VRs are defined so that the next
state of the VR to be transit is precisely specified corre-
sponding to a control signal. The separation of the DB
part from other parts ensures that we can easily deal
with the modifications to VR specifications, additions
of new sorts of VRs, and so on.

5. Conclusion

We have proposed an efficient method for verification
of IN service. A tool utilizing the method has signifi-
cantly reduced the number of mistakes in SLP pro-
gramming and the amount of effort put into off-line
debugging.

6. Acknowledgments
This work would not have been completed without the

support provided by Yoshihiro Niitsu, Takashi Arano,
and my colleagues.

7. References

[1] G.Bregant, R.Kung, "Service Creation for the Intelli-
gent Network", Proceedings of the XIII International
Switching Symposium, 1990.

[21 A.Okamoto et.al., "A Verification Scheme for Service
Procedures, IEICE Technical Report, IN91-109,1991 (in
Japanese).

[3] S.Esaki, T.Omiya, J.Kuwabayashi, "Abstraction of
Transport Networks and Control MEssages for Intelligent
Network", Proceedings of IEEE INFOCOM 1990.

[4] S.Esaki, T.Omiya, N.Shigematsu, "Abstraction and
Control Concepts of Transport Network Resources for In-
telligent Network", IEICE, Nov. 1991 (in Japanese).

[5] K.Okada, K.Sata, Y.Kondo, "Hierarchical Software
Definition Structure for Intelligent Network", GLOBE-
COM, 1989.

{6] Peng-Teng Peter NG, "Supporting Service Develop-
ment for Intelligent Networks ", IEEE JOURNAL ON SE-
LECTED AREAS IN COMMUNICATIONS, Vol.8,No.2,
Feb. 1990.

—168—

