YRV I¥ 94—4
(1993. 9. 21)

HEN—TIIHT Ty YELTTNTY X5 OPTAL D& #AL

il RE B

liGhara.cs.keio.ac.jp harada®hara.cs.keio.ac.jp

BIERBRE RN M T2 ER HESRIEER
T223 MEN AR B 3-14-1

WHFMBOREIZ, 7RSS ADLOHA % LDT Oy Y8) S THE, LFFESOEE
ERREHEIREEATEZONLOSYYTOMENHS. LBROSEN—TIiwT 5 0ty
YORBHHTIZELUTIL OPTAL &MEEND 7V TV A% Polychronopoulos 512 & - THRE
ENTWD, RIXTR, COTNVIY AART, $EN—TOETRIRTOT Oy 4 &6
AT320SHROTT OPTAL OFET NIV XARRET S, TOFEICIDHY TRHRIR. %
ROFEIEIC L BRRLIFF-HL, AL TOYEINETELILERT.

MXF—7—F WAL EN—T. TOeyHRNT, Billt, 7T XA

An Optimal Allocation of the Fixed Number of Processors
to Nested Parallel Loops

Shiao-Chieh LEE Ken’ichi HARADA

liGhara.cs.keio.ac.jp harada®hara.cs.keio.ac.jp

Department of Computer Science, Graduate School of Science and Technology,
Keio University
3-14-1, Hiyosi, Kouhoku-ku, Yokohama, 223, Japan

Abstract An important issue on the efficient use of multiprocessor system is how to allocate each

processor to nested parallel loops. For parallelizing compilers, it is desirable at minimal cost to
get allocations which reduce the execution time of parallel loops. In this paper, we propose an
efficient algorithm for such allocation under the constraint that the fixed number of processors
are fully used for parallel loops. This algorithm can be executed much faster than the existing
algorithm that dose not always use all processors to minimize the total execution time of loops.
Using this algorithm, the physical load balance among the processors can be guaranteed.

I key words Nested parallel loop, Processor allocation, Optimization, Algorithm

1 Introduction

Automatic parallelization of sequential programs is an active
research area. The reason is the need of a powerful parallel
programming environment of the efficient use of multiprocessor
computers. Such an environment should allow the programmer
to free from the architecture details of the machine, and would
be especially useful for large scientific programs. The paralleliz-
ing compiler is an efficient tool.

Intuitively, it might be said that increasing of the number
of processors in a multiprocessor system will improve execu-
tion of parallel programs. It is observed. however, that existing
commercial multiprocessor systems usually contain only a small
number of processors. This fact is mostly due to the inexperi-
ence of using a large number of processors to execute a single
parallel program efficiently. There are several important issues
which need to be further studied. One of these important issues
is the scheduling of independent processors to execute a single
parallel program as fast as possible.

Unfortunately, no feasible solution exists for the general prob-
lem. Very efficient solutions are possible only for specific case
[2][4][6][7]. Since parallel programs provide the greatest poten-
tial of parallelism to be exploited by multiprocessor systems,
it is reasonable and effective to focus our attention on paral-
lel loops. In this paper. we concentrate only on the problem of
static processor allocation for a arbitrarily nested parallel loops.
A processor allocation algorithm is used by the parallelizing
compiler to decide the number of processors that need to be
allocated to each individual loop. such that the parallel execu-
tion time of the entire loop construct is minimized. Although
several other issues, such as memory management and data lo-
cality, also affect the performance of scheduling algorithms, we
do not address these issuses in this paper.

The most important processor assignment algorithm in the
literature is the algorithm OPTAL [1][3]. It has been claimed
that OPTAL can generate optimal processor allocations if the
loop bounds are known at compile-time. In many cases, how-
ever, the loop bounds are unknown at compile-time. This prob-
lem can be alleviated at run-time because loop bounds must
be known before the loop is entered. Thus, it would be appro-
priate to perform processor allocation at run-time just before
the beginning of execution of a nested loop. Unfortunately, the
overhead incurred by the algorithm OPTAL may greatly de-
grade the performance of the multiprocessor system when there
is a large number of processors.

Sometimes, what we are concerned with is how to execute a
given parallel programs as fast as possible on a fixed number of
processors but not how to use available processors as efficiently
as possible executing a given parallel program. In other words
only the optimal allocation of fixed number of processors to
loops is needed. Based on this consideration, we propose an
efficient processor allocation algorithm for nested parallel loops.
Considering the use of fixed number of processors, the algorithm
adopts less comparison of parallel execution time than OPTAL.
Therefore, it is faster than the exsiting algorithm. By executing
this algorithm in parallel, the time complexities can be further
reduced.

The rest of this paper is organized as follows. Section 2 gives
some basic background and necessary definitions. Important
previous work is also reviewed in this section. Section 3 proposes

a new processor allocation algorithm and parallel counterpart.
Performance evaluation is shown in Section 4. Finally, Section
5 gives the conclusion of this paper.

2 Background

In this section, we shall give some basic information and nec-
essary definitions. The algorithm OPTAL will be briefly re-
viewed in this section as well.

As mentioned in the previous section, we focus our attention
on the execution of nested parallel loops on mlﬂtiprocessor 8ys-
tems. In a parallel program, loops can be one of the following
three types: Do loops (serial loops), Doall loops (all iterations of
the loop can be executed in parallel), Doacross loops (successive
iterations can be partially overlapped). The parallel programs
will be executed on multiprocessor systems such that iterations
of Doall and Doacross loops can be distributed over different
processors. Furthermore, execution of loops of different types
can be overlapped.

We introduce definitions and notations relevant to nested par-
allel loops. To simplify our notations, each loop is assumed to
be normalized (i.e. its iteration space is of the form [1, .., N
N € Z*). We may assume that any loop has the following form:

DOI=1,N

{B}

ENDDO
where I is the loop index. N is the loop bound, and B is the
loop body. The loop body may contains other loops. If there is
no other loop contained in the loop body, the Do loop is called
an innermost loop. Otherwise, it is called an outer loop. In a
nested loop, an individual loop can be enclosed by many outer
loops. The nest level of an individual loop is equal to one plus
the number of the enclosing outer loops. The nest depth of a
nested loop is the maximum nest level of loops in the nested
loop. In a perfectly (one-way) nested loop of nest depth m,
there is exactly one loop at each nest level i (t=1,2,..,m).
Therefore, a perfectly (one-way) nested loop of nest depth m is
a loop of the form

DO I, =1, N;

DO I, =1, Ny

A loop is k-way if there exist k disjoint loops at the same level.
For convenience, it is assumed that individual loops in an arbi-
trarily nested loop are numbered increasingly in lexicographic
order. An arbitrarily nested loop containing m individual loops
is denoted by Ly y,.

As mentioned above, a Doacross loop can be informally de-
fined as a parallel loop in which data dependence allow for par-
tial overlap of execution of successive iterations. That is, if
iteration 4 starts at time ¢, on a given processor, iteration 7 + 1
can start at time ¢ + d, where d is a constant. The constant d
is called the delay and represents the difference in time instant
between initiations of successive iterations. If b is the serial ex-

ecution time of the loop body B, the d/b is defined to be the
overlap ratio . When d = b, the loop is serial, while if d = 0,
the loop is reduced to a Doall. Therefore, serial loops and Doall
loops are special cases of Doacross loops. The parallel execu-
tion time of a Doacross loop ¢ on P processors is given by the
following expression:

% (b;) = ([Ni/ P]~1) xmaz{b;, Pxd;}-+d;x ((Ni—1) mod P)+b;

(1)
Where N; is the loop bound, d; is the delay, and b; is the serial
execution time of the loop body. An arbitrarily nested loop
can be uniquely represented as a k level tree where k is the
maximum nest depth. The leaves of the tree correspond to
blocks of assignment statements (BAS’s) in the nested loop and
intermediate nodes correspond to Doacross loops. Accordingly,
each intermediate tree nodes at level m correspond to loops at
nest level m, respectively.

Now the allocation of processors to an arbitrarily nested par-
allel loops is introduced. First, consider the allocation of P
processors to a perfectly nested loop of nested depth 2 with
loop bounds N; and Na, respectively. One possible processor
allocation is to partition P processors into) clusters where each
cluster contains R = | P/Q)] processors and then assign @ clus-
ters to the outer loop and R processors to the inner loop. Under
this processor allocation, each time the inner loop is executed as
if there are R processors availble. Note that the inner loop will
be executed N; times — each time corresponds to an iteration
of the outer loop. Since there are @ clusters of R processors, at
most Q iterations of the outer loop can be executed simultane-
ously. This means that N; iterations of the outer loop can be
executed as if there are Q “processor” is used generically in this
paper and refers to clusters of physical processors of different
sizes.

Since each time the inner loop is executed as if there are R
processors available, each execution of the inner loop will take
I‘I%(bQ) execution time as given in (1). Similarly, each execution
of the outer loop will take Té (b1) execution time. Because each
execution of the loop body of the outer loop is an execution of
the inner loop, we have b;=T3(bs). Consequently, the parallel
execution time of the above processor assignment should be
TY(TR()).

In general, an allocation of P processors to a perfectly nested
> Pr
) such that loop ¢ is assigned P; processors and for each path
from the root node to a leave node the product of the number
of processors assigned to loops in that path is less than or equal

loop of nest depth & can be represented as a k-tuple (P, ...

to P. Given a processor allocation, we can compute its parallel
execution time. An optimal processor allocation is a processor
allocation whose parallel execution time is minimum.

Algorithm OPTAL proposed in [3] can be used to find the
optimal processor allocation. This algorithm is briefly outlined
here. The assignment function G{ (g) is defined to be the parallel
execution time of an optimal allocation of ¢ processors to loop
7 at level 5. The algorithm contains two steps. During the first
step we compute the parallel execution time of each innermost
loop j on the tree as follows:

Gi(g) =Ti(b;)) for q=1,2,..,P @

where T;(*) is given by (1). The second step is defined recur-
sively. Let k be the maximum nest depth. During the second

step, the parallel execution time of the optimal allocation of ¢
processors to loop j at level ¢ is then computed as follows, here
NJ is the number of children of loop j.

) NJ
Gi{g) =mini<r<g {TEY. GTa(la/r])} for ¢=1,2,...,P

n=1

(3)
where (3) is computed for all subtrees rooted at loop nodes j
at level 4, and TJ(x) is given by (1). The summation in (3)
accounts for all loop nodes at level 7 + 1 that are descendants
of loop node j, that is, all loops nested inside loop ;. The par-
allel execution time of the optimal allocation of P processors
to an arbitrarily nested loop Ly, is given by Gf(P). The de-
tailed optimal processor allocation is automatically constructed
during the evaluation of (3). For each loop j at level 7, the opti-
mal number of processors allocated to the minimum term in (3)
and the number of processors allocated to loops nested in loop
j is |q/r]. Hence, the optimal allocation can be constructed
recursively.

It should be noted that all optimal allocations of 1, 2, ..., P—1
processors to an arbitrarily nested loop L;n, are computed as
intermediate results of the computation of Gf‘(P). This can
be used to find the maximum number of useful processors. A
number of processors P is said that to be use ful with respect to
an arbitrarily nested loop Ly ,, if then exists an allocation which
can allocate exactly P processors to the loops of L ,,. Given
P processors for an arbitrarily nested loop Ly, the maximum
number of useful processors is the minimum @), such that 1 < @
< Pand GE(Q) = Gf(P). Accordingly, the maximum number
of useful processors can be computed easily by the algorithm
OPTAL. In Figure 1, we show the action of the OPTAL for a
perfectly nested loop Lj o.

Let the set of possible allocations of ¢ processors, denoded by
Ay, be defined as { (r,s) | s = |g/r] andr =1, 2, ..., ¢ }, then
(3) can be rewritten as follows:

. N
Gi(q) =mingsyea, {TH (D Ghalla/r])} for ¢=1,2,..,P
=t
(4)

The computing time spent in (4) for each loop j at level 4 can
be computed as follows:

M~

P
Mol =3 0= 28X _ o) (5)
=1

It
-

7

where |4,] denotes the number of elements in the set A,.

As discribed above, all allocations of 1, 2, ..., P — 1 proces-
sors to an arbitrarily nested loop Li, are computed by the
algorithm OPTAL as intermediate results of the computation
of Gf. However, not all processor allocation algorithm neces-
sarily possess this property. A processor allocation algorithm is
complete if it computes all optimal allocation of 1, 2, ..., P—1
processors to an arbitrarily nested loop Ly ,, as intermediate re-
sults of the computation of G¥(P). Otherwise, it is incomplete.

Gy ——— T%(Gzz(l)) I HO)
T1G5E@)
Tie26»
T 1 2
REEO)
1 2
TicZey
EEICEION
TiGiom

HE) el
TG 2E)
TL G
TLGZ@»
T3G26)
TG4y
TLiay
T G35
ESTCELeM
ESYCETON
T2GZ)
T1(G5)
TG an
LG

1
G1(aleo

) cl®

Figure 1: OPTAL algorithm for L2

3 Allocating the fixed processors to nested loops

Sometimes, we take another point of view of processor allo-
cation. When a dynamic allocation is required, the allocation
algorithm must be faster than existing algorithm. In fact, we al-
ways allocate all physical processors to nested loops, because us-
ing all processors a high speedup also can be obtained [6]{8], and
algorithm becomes more practical. Under this circumstances,
an incomplete algorithm is sufficient. Because incomplete algo-
rithms compute only these allocations of P processors to Li m,
they can be faster than complete algorithm. For example, the
assignment function G{ (g) of loop j at level 1 is useful only for
g = P. Let the set of dominant numbers of ¢, denoted by Dy,
be define as { |g/r] | 1<r<g }. From (3), we known that the
assignment function G{: (g) of loop j at level 2 is useful only for
g€Dp. and the assignment function G{ (g) at level 3 is useful
only for ¢g€D; where t€Dp, and so on. At first glance, incom-
plete algorithm seems to be very complicated. However, the
following theorems can greatly simplify the implementation of
an incomplete algorithm.

Lemma 1 D; is a subset of Dy if s€D,.

Proof: If s€D,, then by definition there exist r and ¢ such
that ¢ = rs + ¢, 0<t < 7. For every u€D,, there exist v and
w such that s = wv + w, 0<w < v. Accordingly, we have
g = (uv+w)r +¢=u(rv)+ (rw+1t). Since 0<rw +1¢ < rv, we
can derive

u = |g/(rv)] and u€D,

Therefore, for every u€D,, u€D,. Hence, D; is a subset of
D, if s€Dy. [m]

Theorem 1 The assignment function Gf (q) of any loop 7 at
any level 1, 122, s useful only for q€Dp.

Proof: We prove this using induction on the level 1.
Basis: When 14 is equal to 2, this theorem is apparently true.
Hypothesis: Let us assume that when i is equal to k, the assign-
ment function Gi(q) of any loop j at level % is useful only for
g€Dp.
Inductive step: We shall prove this theorem is also true for
i =k + 1. From (3) and the induction hypothesis, we known
that the assignment function Gf; +1(g) of any loop j at level k+1
is useful only for g€ D; where t€Dp. According to lemma 1, we
known that for every ¢€D; where t€Dp, we have where ¢€Dp.
Therefore, the assignment function G‘}; +1(g) of any loop j at
level k + 1 is useful only for g€ Dp.
This completes the proof of this theorem. [}
Theorem 1 insures that (3) is also useful in the set Dp of in-
complete optimal allocation. However, in a optimal allocation,
cluster p; of P = pips...pr must in the set Dp. We prove the
property of this algorithm.

Lemma 2 For each loop 1, Tj(bi)sTj(b,:) ifr>s.
Proof: From (1) we know that when r>s,
(Ni—1) mod r < (N; — 1) mod s
Therefore, T/ (b;)<T!(b;). O

Theorem 2 For each loop j at level i, there exists v, reD,
such that

. NI
Gla) = TI(3_ Gy (la/r)).
n=1

Proof: Without loss of generality, we may assume that
. o NT)
Gl =TI Gralla/r])
n=1

By definition, we have ¢ = sx|g/s] + (¢ mod s). Let r be the
quotient of dividing ¢ by |g/s]. Since |g/s]<g, we have r€D,.
Furthermore, since (¢ mod s) > 0, we can conclude that r >
s and |g/r]=|g/s]. from lemma 2, we have
NJ NJ
T Gialla/rD) 2 THQ GRalle/r]))
n=1 n=1

This completes the proof of this theorem. [m}
Based on theorem 1 and 2, (3) can be rewritten as follow:

X X NJ
Gi(g) =min,epn, {TH(3 GHi(la/r])} for ¢€Dp (6)

n=1

According to the (6), the incomplete algorithm is shown in
Figure 3. As an example, the computation of the optimal al-
location of 8 processors to a perfectly nested loop Lis by the
algorithm is shown in Figure 2. Here, Dp = { 1, 2, 4, 8 }.

The time complexity is analyzed in the following.

Lemma 3 For any positive integer q, we have
Dy = {rl1<r<|valy U LLe/rlI1<r<val}

and

_) 2lval
1Dq| = { 2|4l =1 otherwise

— 28—

if\/q is not in ZT and q/|/ql>|va) +1

Proof: From definition, D, = { |g/r] | 1<r<gq }, it is obvi-
ous that numbers of r (1<r<|,/g7]) are successively in the set
D,. When r is greater than |,/g], the values of |g/r] can be
obtained from the quotients of dividing s by [¢/s] (1<s<|./g]).
Therefore,

Theorem 2 em The time complexity of the algorithm is O(P),
where P is the number of processors.

Proof: From lemma 2, the computing time spent in (6) for
each j at level ¢ can be computed as follows:

VP
> 2ly/Pli] +
i=1

Dy = {rlt<r<lval} U {le/r]it<r<lval}

When \/g€Z*, hence the number /g in subset {r|1<r<|,/7}}
is equal to the number |g/,/g] in subset {|g/r||1<r<|\/d]},
|Dq| = 2]4/q] - 1. When /g does not belong to Z* and ¢/| /7]
< lval + 1, [Dy] is the same as \/geZ+. Therefore,

LVP)
> 21Vl

i=1

> bl

q€Dp

D |={ 2l val if\/G is not in Z* and q/|/ql2|/g) +1
¢ 2(/q] —1 otherwise
a
clcay — = 7 1@ Zay
TicSe»
TG 3e»
T i 2e»
TG 36»
EHE) ‘Tl Zen
T{GZo»
Ticiey
TL@Za»
T GZe»
alw T @Ze»
T1G%»
T G3an
T @3e@»
Tie3an
clcsy Ti3en
T GZan
TG a»
T3 GZan
T3GZa»
Figure 2: Incomplete allocation algorithm for Liso
INPUT:
1. L is a nested loop;
2. k is the nest depth of L;
3. P is the number of available processors.
OUTPUT:
An incomplete optimal processor allocation.
METHOD:
for each innermost loop j
for g Dp do
begin
Gi(a) = T} (5;)
end;
fori=k—1tol
for each loop j at level ¢
for g€ Dp do
begin
Gia) = min,ep, {TI(TN G(la/r]))
end;

return the table of the optimal allocation.

Figure 3: The incomplete allocation algorithm

LYP) WPl
<> /Pli+ Y 2vi
i=1

i=1

VP
<4+ 3 2P =0(P)
i=1

This completes the proof of this theorem. [m}

The time complexity can be further reduced by executing the
algorithm in parallel. Let us consider the computation of as-
signment function Gf: (q) at level ¢ for loop j, the function is
dependent on values of 2[,/g| T3’. Because 2|va] (¢€Dp) is
less than P, this step can be parallel executed. Theoretically
the minimum of T§’s also can be obtained in parallel. Though
the parallel execution, the evaluation of G{ (¢) becomes faster
than the original. We give the parallel counterpart in Figure 4.

INPUT:
1. L is a nested loop;
2. k is the nest depth of L;
3. P is the number of available processors.
OUTPUT:
An incomplete optimal processor allocation.
METHOD:
for each innermost loop j
for g€ Dp do
begin
Gilg) = Ti(by)
end;
fori=k—1to1l
for each loop 7 at level ¢
for ge Dp do
begin-co
Regr = T chita o5 j Gl1(la/7]),
G(q) = min { Reg, | r€Dg }
end-co;
return the table of the optimal allocation.

Figure 4: The parallel algorithm

The time complexity is analyzed in the following.

Lemma 3 A decision of the minimum from M values can be
done in O(logM) on P (P>M/2) processors.

Proof: Let the data set be {71, 12y ooty Pm1, ™m }. At first
step, compare r; with ro and replace the minimum to rq,

ceny

reD,

m—1 With 7, and replace the minimum to r,_; at parallel,
here M /2 processors are necessary, then the set becomes { 71,
73,,Tm—1 }. We use the same step recursively on the data set,
and at loga(M/2) step the minimum of the set can be obtained.
Therefore, the time complexity is O(logM). 0

Theorem 3 The time complexity of parallel algorithm is O(vVP
logV/P), where P is the number of processors.

Proof: The computing time spent in (6) in parallel can be
divided into two parts, one is the computation of Tij , another is
the evaluation of minimum. Because the number of Tij ’s is less
than P, the computing time is regarded as a constant. From
lemma 3 and lemma 4, we have

VP) VP|

DDl =3 log(2iy+ 3 log(Z\/];/‘z')
i=1

qeDp i=1

VP

< 3" (log(s) + log(y/P/i))
i=1

N

= 3 (log(i)/2 + log(VP))
i=1
VP LVP)

< 3 log(i)s Y. log(VP)
i=1 i=1

= O(VPlogyV'P)

This completes the proof of this theorem. 0

The algorithms shown above also constructs optimal proces-
sor allocations if the loop bounds are known at compile-time.
This is frequently the case in numerical software where loop
bounds usually reflects the problem size. However, there are
cases where the loop bounds are not known at ¢ompile-time,
it is possible to allocate processors dynamically using parallel
counterpart of this algorithm.

4 Performance evaluation

In this paper, two allocation strategies were described: com-
plete optimization algorithm OPTAL[3] and our incomplete op-
timization algorithm. The overall time complexity of latter
is O(P), which is derived by assuming that P processors are
used. In fact, the claimed value reflects only the “observed”
worst case. Consider the proof of Theorem 3, when P is a
large number, Z};/FJ 2|v/PJi +Zi;/1ﬁj 2|1 is much less than
El‘f ! 2|V/P] , therefore, O(P) is the threshold of the time
complexity. The exact time complexity is fairly difficult to show.
As a result, we give performance measures of two algorithm
obtained through simulation runs, and compare the optimized
allocations.

A. Algorithm Efficiency

It is clear that OPTAL and our strategy is different in the
total of computations of T;(bj) (1<q<P). This is the most im-
portant factor which affects the performance of the algorithms.
In the other hand, both the two algorithms obtain the optimized
allocations from a tree, in which Té (b;) is a node. To get the
Gliq) s, all T‘; (b;) ’s should be saved. So memory allocating

all mediate values must be considered here. In our strategy,
the computations of T; (b;) are significantly decreased, the time
complexity and storage efficiency are much better than OPTAL.
We plot the computation time for two algorithms in Figure 5.
The storage efficiency is shown in Figure 6. It gives a ratio of
memory consumption of OPTAL and incomplete algorithm.

TIME

105y e OPTAL
incomplete algorithm

v oA N ®
1

IS
I

=7 ORI R S N P
o 16 32 64 128 256 512

Figure 5: Performance of algorithms

M opraL

Miuwmplete
7k
6 |-
s -

| T R WA SO N |

16 32 64 128 256 512

Figure 6: Efficiency of storage

From figures, it is obviously that our strategy always takes a
considerably less time and memory.

B. Result Analysis

For two strtegies, perhaps the following question would be
asked, how different are allocations between two allocating strate-
gies? Indeed, sometimes allocation results are different, On
strictly speaking, the allocations constructed by OPTAL is a
“most” optimal result, but the allocations constructed by our
strategy are very similar to that of OPTAL. Because allocation
results are depend on nested depth, boundaries, synchronization
method, and structure of nested loop, we cannot give a theo-
retical analysis. From a lot of numerical program, we choose
some nested loops, based on which the allocation results of two
strategies are compared. Here the following notations are used.
SAM/3 means that a loop in program SAM is a 3-nested loop,
2-2-2 expresses that two clusters are assigned to each level of a
3-nested loop. Table 1 shows allocation comparison correspond-
ing to different number of processors, the result of OPTAL is
shown above the line, another is the result of our algorithm.

OPTAL
P=16 P=32 P=64 P=128 P=256 P=512
incomplete
8-2 8-4 8-8 8-16 16-16 16-32
CCD/2 — — —_— — — —
8-2 8-4 8-8 8-16 16-16 16-32
16-1 32-1 32-2 32-4 32-8 32-16
AMD/2 — — — -— — —
16-1 32-1 32-2 32-4 32-8 32-16
2-8-1 2-2-8 63-1-1 2-4-16 2-8-16 2-8-32
SAM/3 — — — -— — —_
2-8-1 2-2-8 64-1-1 2-4-16 2-8-16 2-8-32
4-4-1 8-4-1 63-1-1 8-8-2 8-16-1 8-8-6
MDG/3 — — — — — —
4-4-1 8-4-1 64-1-1 8-8-2 8-16-2 8-8-8
16-1-1-1 | 32-1-1-1 | 64-1-1-1 | 120-1-1-1 | 208-1-1-1 | 508-1-1-1
SPICE/4 — — — — — —
16-1-1-1 | 32-1-1-1 | 64-1-1-1 | 128-1-1-1 | 256-1-1-1 | 512-1-1-1
1-1-1-16 | 1-1-1-32 | 1-1-1-63 | 1-1-1-128 | 1-1-1-255 | 1-1-1-510
ARC2D/4 | — — — — — —
1-1-1-16 | 1-1-1-32 | 1-1-1-64 | 1-1-1-128 | 1-1-1-256 | 1-1-1-512
Table 1: Allocation comparison
Bounderies N1=100 | N1=900 | N1=1700 | N1=2500
of N2=100 | N2=900 | N2=1700 | N2=2500
Nested Loops | N3=100 | N3=900 | N3=1700 |{ N3=2500
MDG/3(P=63) | 0965 | 1.521 2.274 2.644 |
MDG/3(P=64) | 1.033 1.608 2.266 2.749 T

Table 2: Parallel execution time

From the benchmark suit, we have found that allocations of
two algorithms are very similar, especially, when P is small, al-
most the same results are generated. The different allocations
often occurred when P is a large number. By our observation,
for simple allocations (all processors are assigned to one loop),
the possibility of different results is higher than complex allo-
cation (processors are assigned to more than one loop). In 80
loops observed by us, over 70% allocations are the same. We
cannot give the all time comparisons between two different al-
locations. Here, only one case is simulated, which is MDG/3 at
P=64. In OPTAL, the allocation is 63-1-1. It means that 63
clusters, one of which contains one processor, are assigned to
the first loop. While our strategy is 64-1-1. The parallel perfor-
mance time estimated for MDG/3 are shown in Table 2. It is
found that the time of P=63 is faster than the time of P=64,
but the gap of them is very small and can be accepted.

5 Conclusion

In this paper, we presented an algorithm for allocating proces-
sors to an arbitrarily nested parallel loop that parallel execution
time is minimized. we have shown that the existing optimal pro-
cessor allocation algorithm in the literature is inefficient. Based
on an assumption that full processors are used, some computa-
tions are eliminated, the incomplete algorithm proposed in this
paper is more efficient.

In addtion, we analyzed the algorithm efficiency and com-
pared the allocations constructed by two algorithms. Although
we only consider using all processors, our algorithm also yields a
high efficient allocation. This alogrithm can be impleinented in
parallelizing compilers. It will result in improvements in com-
pilation speedup.

References

[1] C.D. Polychronopoulos, D.J. Kuck and D.A. Padua : Ez-
ecution of parallel loops on parallel processor systems, in
Proc. 1986 Int. Conf. Parallel Processing, 1986, pp.519-
535.

)

] C.D. Polychronopoulos and D.J. Kuck : Guided self-
scheduling: A practical scheduling scheme for parallel su-
percomputers, IEEE Tran. Comput, Vol.36, No.12, pp.1425-
1439, Dec. 1987.

[3] C.D. Polychronopoulos, D.J. Kuck and D.A. Padua : Uti-
lizing multidementional loop parallelism on large-scale par-
allel processor systems, IEEE Tran. Comput, Vol. 38, No.
9, pp.1285-1296, Sept. 1989.

[4] J.A. Fisher, J.R. Ellis, J.C. Ruttenberg, and A. Nico-
lau : Parallel processing: A smart compiler and a dumb
machine, ACM SIGPLAN Notices, Vol.19, No.6, pp.37-47,
June 1984.

[5] K.P. Allen and P. Banerjee : A scheduling algorithm for
parallelizable dependent tasks, in Proc. 5th Int. Parallel
Processing Symposium, April 1991.

[6] N. Tawbi and P. Feautrier : Processor allocation and

loop scheduling on multiprocessor computers, in Proc. 1992
ACM Int. Conf. Supercomput., 1992, pp.63-71.

[7] R. Manner : Hardware task/processor scheduling in a
polyprocessor environment, IEEE Tran. Comput, Vol.33,
No.7, pp.626-636, July 1984.

[8]S. Hiranandani, K. Kennedy and C. Tseng : Evaluation
of Compiler Optimizations for Fortran D on MIMD Dis-
tributed -Memory Machines, in Proc. 1992 ACM Int. Conf.
Supercomput., 1992, pp. 1-14.

