EHMMIPFSHYEFE 7075327 Vol.i5 No.d 2 (Sep. 2022)
HREIE

KT — 2 AT Elixic 7 7Y 7 — 3> 3 VD
= LD 728 D OpenCL 2 — F DAL T

TER ALY AT WA R R e

2022 3R 17HER
EMri&m%VMLTEW?%%%ﬂﬁﬁfﬁw Ruby # &% & LSt shCnsd, 4F
e LT, BWENT, 7—5DA I 2—% TNV, BXY, map/reduce 7 IVIC L B AHILEOFL R

ﬁ%@&&#@i%ﬂé._hgwkﬁ#% BRI RERHE M EOBUS 2 S Blixir 2 KB 2 B4 5]
B7 7)) r—2arNGFHTAZLEORENET > TS, LHL, Eixirid 70ty FofiiE< s »
TEET 52 HATH L7720, HEEHTOREW BT S 5. KFZEOHIL, KBEZ 7 — 7%&7
Elixir 77V 7 — /5/@1—11_'”3'(3?)% AL T, map B % 72 Elixir I — RS FEERY 125

&ommm:~b%$m¢5$&%kﬁfé.mm@LuTnfx&nﬁ@mwAm7477Uf%m
GPU R FPGA B EFiA DFNAATT I r—v a VEd b zM5s 2 EHNTEDL,. T— FIEROKIC
T AT E N, B L, 781 FHEF I FE SN S Elixir ORS00 E L 2 5. AR TIE,
IS ZRIT L7200 HFRB B L O TR 2 %eT 5. ElShia— FEabeThERS
% Erlang ® FF1 T % NIFs % fi\ /2@ E % 7 LfGPUL&&T%ﬁT%%# PERER MV Ay &
)) BTNA AMBEDNZHETH I IR D, ZORBENIRT 572012, HED map BEE T L0
%%i*@%%ﬁ&momf§%%ﬁé.%%%&~%O%n~b¢mﬁ®*¢%ﬁw KB 77— 5
) N F <=7 TR ITWARRZEO AL R,

Presentation Abstract

A Method of Synthesizing OpenCL Code
for Accelerating Large-scale Data Application by Elixir

TATSUYA ABE''® Ryora Mivacr! Naonumi TakAacr! HIDEKI TAKASEZS
Presented: March 17, 2022

Elixir is a functional language that runs on the Erlang VM, and is designed Ruby-like. Elixir has fea-
tures such as dynamic typing, immutability of data, and ease of describing parallel processing using the
map/reduce programming model. From its features, the momentum for utilizing Elixir programming for
large-scale parallel computing applications is increasing, especially from the viewpoint of improving design
productivity. However, since Elixir runs on a virtual machine on the processor, there is an essential limit in
terms of performance. The purpose of this paper is accelerating large-scale data application by Elixir. In
this paper, we propose a method to generate functionally equivalent OpenCL code from Elixir code using
the map function. OpenCL is an API library with high device portability, and can accelerate applications
on various devices such as GPU and FPGA. When generating code, the differences in typing rules and the
characteristic syntax of Elixir such as pipe operator become issues. In this study, we design intermediate
representations and static type inference to solve these problems. The generated code can be executed on
the GPU etc. via the communication mechanism using NIFs which is Erlang’s FFI that is also generated. In
order to reduce the number of device-to-device communication at that time, we also propose a method for
reducing the syntax tree that merge multiple map functions. We implement a code generation system based
on the proposed method and evaluate it with a benchmark using large-scale data to show the effectiveness
of this proposal.

This is the abstract of an unrefereed presentation, and it
should not preclude subsequent publication.

et VN

Kyoto University, Kyoto 606-8501, Japan 3 JST & &H%F
2 R JST PRESTO, Kawaguchi, Saitama 332-0012, Japan
The University of Tokyo, Bunkyo, Tokyo 113-8654, Japan 2) abe@lab3.kuis kyoto-u.ac.jp

© 2022 Information Processing Society of Japan

