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eBPF-based Packet Tracing for Service Mesh
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Abstract: Large scale microservice applications have been arisen and the application’s architecture and con-
tainer overlay networks on servers have also been complex. Although the distributed tracing for the service
mesh is widely adopted in the microservice applications, it only focuses on latency-based monitoring and
service discovery at an application layer. It is still challenging to monitor the container overlay networks to
collaborate with the service mesh. In this paper, we present a packet tracing method using eBPF for the
latency measurement based on the service mesh on the container overlay network. To detect the distributed
tracing context on a HTTP header efficiently, we move the location of the tracing context at the head of
the HTTP on sidecar proxy. Our tracing method gathers the HTTP packets that have the tracing context
and measures the latency using eBPF. Our evaluation using an open-source benchmark on Kubernetes shows
that there is no significant change of end-to-end latency using the proposed tracing header format. Moreover,
our eBPF tracing method presents the similar latency characteristics on the container overlay network in
comparison with tcpdump.
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1. Introduction

Applications based on microservice architecture are

widely adopted in production, such as Uber [26], Lyft [19],

Netflix [21], and Amazon [1]. In particular, Kubernetes

(K8s) [15] and container technologies [4], [6] have been also

used as main components for the microservices. Moreover,

the scale of microservice applications is large and their ar-

chitecture is also complex. Uber [18] has 35 K8s clusters

that each cluster consists of 100,000 containers and Lyft

[20] runs 300,000 containers on multiple K8s clusters. To

support connectivity between the microservices, the con-

tainer overlay networks [9], [23] in Linux kernel are pop-

ularly used. Due to such hyperscale microservices, the

container overlay network is also complex and it would be

a performance bottleneck point.

For microservices monitoring and service discovery, the

distributed tracing [14], [24], [29] that inserts extra tracing

context [5] to a HTTP header and measures latency be-

tween the microservices for the service mesh [13] is widely

adopted. However, the distributed tracing focused on the
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latency measurement on microservices’ application layer.

Thus, there is no consideration of infra. layer, such as the

container overlay network. To enhance the network mon-

itoring and debugging in the kernel, extended Berkeley

Packet Filter (eBPF) [7], [28] has been used. eBPF han-

dles not only packet processing but also generic events in

Linux kernel.

eBPF is promising for the latency-based monitoring on

the container overlay network, however, existing moni-

toring methods [11], [25] using eBPF have the following

limitations to collaborate with the service mesh. First,

there is no consideration of microservice’s service mesh

and it is hard to discover the entire microservices topol-

ogy on the container overlay network. Second, the pre-

vious works only focused on the latency measurement on

IP/TCP/UDP protocols. Thus, there is no support of L7

protocols, such as HTTP and GRPC. Third, the detection

of the distributed tracing context is also hard because the

context is at the end of HTTP header.

To overcome the limitations of the existing methods,

we present an eBPF-based packet tracing method for the

service mesh. First, we move the distributed tracing con-

text to the head of HTTP header by modifying the side-

car proxy [8] that attaches and detaches the distributed
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tracing context. Next, we gather the K8s cluster informa-

tion for automatically deploying eBPF programs that de-

tect the distributed tracing header and mark timestamps

on the container overlay network. Finally, we deploy the

eBPF programs to dedicated tracing points and measure

the latency using the timestamps on the container overlay

network

In this paper, we will show 1) a comprehensive view of

our eBPF-based tracing method to measure the latency

on the container overlay network (§3), 2) the performance

and the detailed analysis of our eBPF-based tracing (§4).
Furthermore, in the evaluation of our eBPF-based trac-

ing, we will present i) the side impact of proposed trac-

ing header format through end-to-end latency measure-

ment (§4.1), ii) the efficiency of proposed tracing header

(§4.2), and iii) the latency characteristics using eBPF on

the overlay network (§4.3). All of these results will help in

monitoring the container overlay network and diagnosing

performance problems from the aspect of latency.

2. Related work

Tracing-based monitoring methods. There have

been a number of tracing-based monitoring methods

[2], [10], [22], [24]. To the best of our knowledge, none

of the existing approaches could not consider the dis-

tributed tracing for the service mesh to measure the la-

tency on the container overlay network. X-Trace [10]

provides the telemetry-based tracing on multiple lay-

ers (HTTP/TCP/IP). X-Trace inserts and removes extra

metadata like the distributed tracing context. Moreover,

it provides a comprehensive view of tracing results. X-

Trace does not handle traffic on the container overlay net-

work. Dapper [24] focuses on diagnosing and debugging

of applications using the distributed tracing. It provides

transparency between applications. This tracing scheme

is widely used for other distributed tracing methods, such

as Zipkin and Jaeger. Niu et al., [22] expanded INT [12]

for IP-Over-Optical Network. It provides a view of multi-

ple layers: IP and optical networks. Their INT-based ap-

proach does not handle packets related to the distributed

tracing. Ashok et al., [2] shown that the service mesh can

be possible to be expanded as a network layer for network

routing and monitoring. However, their approach only

focused on the routing and finding network bottleneck.

Latency Measurement using eBPF. eBPF is widely

used for kernel tracing and debugging. Suo et al., [25]

developed vNetTracer for packet tracing in the software-

based virtual network. In vNetTracer, the extra unique

headers are added to both TCP and UDP packet head-

ers and the extra headers are used for the packet tracing

in Linux kernel. vNetTracer can detect overhead points

using the eBPF-based latency measurement in the kernel.

However, there is a lack of consideration of microservice’

s service mesh. HostINT [11] using eBPF is similar to

our tracing method. It collaborates with INT [12] and

provides the latency measurement of ICMP/TCP/UDP

traffic. But, there is no consideration of HTTP and dis-

tributed tracing context parsing.

3. Design and Implementation

We show the design overview of our eBPF tracing

method in Figure 1. There are five components to mea-

sure the latency on the container overlay network.

1. Sidecar proxy (§3.1) attaches and detaches the

distributed tracing context [5] (TraceID, ParentSpanID,

SpanID) on the HTTP header. To reduce the search space

of the tracing context using eBPF, we move the tracing

context at the head of HTTP and fix the location of the

tracing context.

2. Trace info. collector (§3.2) consists of four sub-

components. It collects the information of K8s cluster

from docker [6], istio [13], iptables, and the K8s master

node.

3. eBPF dispatcher (§3.3) deploys eBPF programs to

measure the latency with the filtering information and the

tracing point on the container overlay network.

4. Agent (§3.4) collects timestamps from the eBPF pro-

gram and calculates the latency.

5. eBPF program (§3.5) is in charge of filtering the

packets that have both the HTTP header and the dis-

tributed tracing context and timestamping the filtered

packets on the tracing points.

Our control plane (§3.2, §3.3) periodically gathers the

K8s information from the K8s cluster. Then, the eBPF

programs are deployed to filter the HTTP packets with

the tracing context and to mark the timestamps to the

HTTP packets. Finally, the agent gathers the timestamps

and calculates the latency.

3.1 Sidecar proxy

We re-design the distributed tracing context location ef-

ficiently to detect the tracing context using eBPF on the

container overlay network. In the original header format

(Figure 2(a)), the distributed tracing context is located at

the end of HTTP header. Due to the large search space

on the HTTP payload, it is not easy to detect the trac-
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図 1 Design overview of eBPF-based tracing method.
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図 2 Distributed tracing context location.

ing context using the eBPF. As the worst case, the eBPF

cannot detect the distributed tracing context. To detect

the tracing context using the eBPF on the container over-

lay network, we move the tracing context at the head of

HTTP and fix the location of the tracing context (Figure

2(b)).

3.2 Trace info. collector

The trace info. collector monitors the K8s cluster and

collects the information to configure the eBPF program

for the latency measurement on the container overlay net-

work. The K8s cluster info. component gathers the infor-

mation of pods, nodes, and K8s namespaces via kubectl.

It also collects the IP addresses at the pods.

The tracing point component collects a mapping infor-

mation between a virtual interface (vport) and container’s

namespace on docker. To gather the mapping informa-

tion, we use the vport and container’s process IDs. Next,

the packet filtering information for the filtering component

is gathered from iptables. We estimate the packet filtering

information on NAT tables on iptables using the collected

K8s pod names. Finally, the service mesh is collected

from istio. In detail, Jaeger [14] is used to gather the

microservice’s topology from HTTP requests through the

microservices. If the service mesh is dynamically changed

by users or auto-scaling, our collector also collects the ad-

ditional information. The influxDB is used for the latency

store.
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図 3 eBPF program location at network stack.
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図 4 eBPF packet parser.

3.3 eBPF dispatcher

The eBPF dispatcher checks the names of NIC and

vport. In our K8s worker node, the NIC indicates a hard-

ware network interface to connect to network or other

servers and the vport indicates a software virtual interface

to connect to the K8s pods. The packet filtering informa-

tion (inner/outer ip addresses and tcp port numbers) from

the trace info. collector and confirms the existence of such

resources on the K8s cluster. The dispatcher creates the

eBPF program with the above configuration and sends the

eBPF program to the K8s worker nodes.

3.4 Agent

The agent is located at the K8s worker nodes and de-

ploys the eBPF programs to the dedicated tracing points

(e.g., the NIC and the vport). We carefully select the

two tracing points to consider the overhead of eBPF de-

ployment. To measure the latency on the container over-

lay network, the two eBPF programs are simultaneously

deployed to the tracing points. The agent periodically

gathers the timestamps from the maps (eBPF Maps), cal-

culates the latency between the timestamps, and forwards

the latency to the store on the control plane.

3.5 eBPF program

The eBPF program is deployed to the dedicated trace

points on the container overlay network. This program

is located to raw socket layer at network stack to gather

all of packet headers (Figure 3). Thus, we can access to

L2/L3 layer packet information fully. The reason why
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図 5 Microservices application (Bookinfo).

we use eBPF for the latency measurement is that eBPF

can process both RX/TX direction packets. Although

XDP provides the high performance of packet processing

in comparison with eBPF, XDP can handle RX direction

packet only. It is a drawback to measure the latency on

the container network.

The eBPF program consists of packet parser with

filtering, HTTP payload analysis, and timestamp gen-

eration/insertion. In the packet parser (Figure 4),

VXLAN/IPIP protocol parsing is supported because these

protocols and CNI plugins [9], [23] are widely adopted for

the container overlay network. Next, the packet head-

ers are parsed with the designated packet headers like P4

programmable packet parser and the five tuples (protocol,

source ip/port and destination ip/port) at the matched

packets are extracted during the packet parsing.

After the TCP/IP header parsing, the designated num-

ber of bytes is read and the HTTP payload analysis checks

whether the HTTP header is included or not. If there is no

HTTP header at the packet, the packet is just forwarded

to destination (e.g., a container or network). If there is

HTTP header, the fixed size of HTTP payload is read and

the distributed tracing context are searched. If the dis-

tributed context is observed, the nano scale timestamp is

marked. Next, the timestamp, the five tuples, the TCP

sequence number, and the tracing context are stored to

the map (eBPF map). The sequence number is important

to identify the same packet at the trace points.

3.6 Implementation

We implement a prototype that measures the latency on

the container overlay network. First, 0.1K lines of C++

code are added for the modification of sidecar proxy. Next,

the control plane module that collects the information of

K8s cluster is implemented in 1.0K lines of Python code.

Then, the agent that calculates the latency and sends the

latency is implemented in 0.5K lines of Python code. Fi-

nally, the eBPF program for the latency measurement is

implemented in 1.0K lines of both C and Python codes.

4. Evaluation

We evaluate our eBPF-based tracing method to answer

the following questions:

• Is there any side impact of the modification of sidecar

proxy?

• How many search space can be reduced using the pro-

posed header format?

• Is it possible to measure the latency using the eBPF

on the container overlay network?

Latency Measurement Setup. We evaluate our

tracing method using Bookinfo microservice application

[3] in Figure 5. Kubernetes is used as container orches-

tration and Calico [23] (IPIP mode) is used for the con-

tainer overlay network. We run the K8s cluster (v.1.22)

and the agent on five machines with two Intel Xeon (E5-

2650) CPUs, 128GB of memory, and Mellanox ConnectX-

5 (100 Gbps). Istio (v.1.12.1) is used for the service mesh.

Ubuntu 20.04.3 LTS (kernel version: 5.15.0-33) is used

for the K8s cluster. We use one machine for the K8s mas-

ter node, four machines for the K8s nodes, and the last

one machine for the control plane module. We deploy the

bookinfo application that consists of four microservices on

the different K8s nodes (Figure 6). The ingress gateway

is used as TLS termination proxy, handles the traffic from

users, and generates the distributed tracing context for

the service mesh. For the ingress gateway, the same type

of sidecar proxy in the K8s pod is adopted.

To generate the dedicated HTTP workload, we use veg-

eta [27] as HTTP load testing tool. We prepared one

machine that has the same spec. of K8s node and gen-

erated 1 Queries Per Second (QPS) and 80 QPS. If the

number of QPS is larger than 80 QPS, the end-to-end la-

tency is increased in seconds. To prevent the unexpected

end-to-end latency, we fix the maximum workload as 80

QPS.

To reduce the timestamp fluctuation and the impact

of unexpected interrupts that affect the latency measure-

ment, we separate the CPUs for the eBPF program on the

K8s node and the CPUs are only used for the eBPF pro-

gram. We refer to the server configurations from [16], [17]

for the latency measurement.

4.1 End-to-end latency

In this section, we measure the end-to-end latency to

observe the impact of sidecar modification. If there is the

side impact of sidecar modification, it would be observed
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図 6 K8s cluster with Bookinfo application.

表 1 Statistics of end-to-end latency measurement results.

HTTP

workload

Header

format

Min

[ms]

Median

[ms]

Mean

[ms]

Max

[ms]

1

QPS

Original 40.7 51.5 54.2 90.4

Proposed 39.4 48.4 49.4 73.3

80

QPS

Original 43.2 79.1 86.7 313.8

Proposed 44.8 82.3 91.2 304.9
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図 7 CDF of end-to-end latency.

to the end-to-end latency. We prepare the two types of

the sidecar: the original and the proposed header format

and generate the two types of workload: 1 QPS and 80

QPS.

The statistics of end-to-end latency measurement are

shown in Table 1. The similar statistics of latency are

shown. While the proposed header format is slightly faster

than the original header format with 1 QPS, the mean and

median latency of the original header is smaller than those

of the proposed header format with 80 QPS. To see the

entire latency characteristics, the CDF curves are shown

in Figure 7. There is a difference between the proposed

and the original headers with the 1 QPS. Although the

statistics of the proposed header are slightly higher than

those of the original header, we cannot find any significant

characteristics of the CDF curves with 80 QPS. From the

results, the similar latency characteristics are observed by

the two different header formats and their performance

gap is negligible.

4.2 Distributed tracing context detection

To answer the second question, we control the HTTP

payload search space from 100 bytes to 800 bytes to de-

tect the distributed tracing context. When the number of

search spaces is increased to 900 bytes, the number of in-

structions is larger than 4096 and we cannot execute our

eBPF program. It would be possible to use tail call to

overcome the instruction limitation. But, the tail call is

out of our scope.

In the product page (Figure 5), there are three types of

distributed context. The first one is from the ingress gate-

way, the second one is to the detail, and the last one is to

the reviews. Thus, the number of SPANs in the product

page is higher than the other microservices applications.

Because of the above reason, we choose the product page

as our evaluation target and generate the same HTTP

workloads (1 QPS and 80 QPS) to the bookinfo applica-

tion.

We show the tracing context detection rate in Figure 8.

With the small search space (100 bytes), the eBPF pro-

gram cannot detect the tracing context fully. However,

the eBPF program can parse the tracing context provided

by the proposed header format after the search space is

increased in 200 bytes. Meanwhile, the original tracing

header format cannot be detected fully. The major cause

of decreased detection rate of original format is that there

are many extra distributed tracing contexts in the particu-

lar HTTP header and the HTTP header length is changed

by both HTTP types and distributed tracing decorators.

In detail, the length of distributed tracing metadata from

the ingress gateway is approximately 1000 bytes and it is

too long to parse it using the eBPF program.

From the results, the search space of the proposed trac-

ing is smaller than that of the original format and it is

enough to show the efficiency of the proposed header for-

mat. The proposed header format would be more friendly

to another network infra. layers, such as physical net-

work (underlay network) to detect the distributed tracing

context.

4.3 Latency on container overlay network

In this section, we show the latency measurement re-

sults on the overlay network. First, we apply the sidecar

proxies to the bookinfo to generate the proposed header

format and deploy the eBPF programs to the tracing

points (the NIC and the vport) in Figure 6. In the

eBPF program, the payload search space is fixed as 200

bytes. Next, we simultaneously run tcpdump on the trac-

ing points in comparison with the results from the eBPF

program and use ramdisk to reduce the packet capture
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図 8 Distributed tracing context detection rate (Due to the

limitation of instructions (4096), we cannot use the large

search space (e.g., 900 bytes)).
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図 9 CDF of latency on container overlay network.

loss. The tcpdump and server configurations are referred

from [17]. Although the timestamping point between tcp-

dump and the eBPF program is different in Linux ker-

nel, tcpdump is useful to identify the five tuples and the

tracing context. Moreover, we will show the CDF curves

of both tcpdump and the eBPF. Finally, we gather the

HTTP headers with the proposed tracing header format

and packet-level traces from tcpdump. The HTTP work-

loads and the tracing points are same to the tracing con-

text detection experiments.

Through off-line analysis, we extract the same packets

from the packet traces using the tcp seq. of the eBPF re-

sults and classify the packets into two type directions: rx

(NIC→vport) and tx (vport→NIC). In here, we show the

CDF curves of the product page in Figure 9. The other

CDF curves are also similar to Figure 9, but they are

omitted for the sake of brevity. Although the timestamp-

ing point is different between tcpdump and our eBPF-

based tracing method, the similar CDF curves are ob-

served. With 1 QPS, the mean latency of the eBPF for the

rx (NIC→vport) is 34.2 µs and that for tx (vport→NIC)

is 43.1 µs. With 80 QPS, the mean latency for the rx

(NIC→vport) is 25.0 µs and that for tx (vport→NIC) is

32.2 µs.

5. Conclusion

In this paper, we focused on the latency measurement

for the service mesh on the container overlay network by

using eBPF. Although the distributed tracing is widely

used for the service mesh, existing distributed tracing

methods do not consider the container overlay network.

Our eBPF-based tracing method utilizes the sidecar proxy

that has the proposed header format and the eBPF pro-

gram that detects the proposed header on the overlay

network. We show the effectiveness of our eBPF-based

approach through the evaluation using the open-source

microservice application.

Our future work involves evaluating our eBPF tracing

method to other microservice applications and enhancing

the distributed context detection on other protocols. We

plan to expand our tracing method to measure the latency

on multiple sites and container underlay network (physical

network).
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