脳血腫マーカーの画像パッチのマルチラベル学習

加藤舜斗1 河津水紀1 中島崇晴1 有村公一2 飯原弘二3 大北剛1

概要:本論文では,画像認識をローカルな形でパッチで行い、画像をパッチのバグとして見る. これはマル チインスタンス学習を直接やる場合の負荷が大きいために,これを半教師あり学習的な形で負荷の減少を 目指す目的をもつ.本論文では,時間の関係から、前者のみを扱う.

Deep Learning of Image Patches of Brain Hematoma

SHUNTO KATO¹ MIZUKI KAWAZU¹ TOMOHARU NAKASHIMA¹ KOICHI ARIMURA² KOJI IIHARA³ TSUYOSHI OKITA¹

1. はじめに

急性脳内出血(ICH)の5分の1は、24時間以内に血腫 が拡大する。急成長を行う型の脳血腫であれば即座に判断 して、即座に脳外科医が手術を行う必要がある.この判断 を見誤ると即座に命を落とすことになるからである.この 判断は通常、CT 画像を用いて行われている.本論文では、 CT 画像を用いて,急成長する型の脳血腫かどうかを深層学 習を用いて判断することを考える.

このための一つの方法として、これまで、脳血腫のマー カーとして、脳血腫が急成長を行うマーカー型であるこ とを検知するアプローチを用いて対処してきた. 脳血腫の マーカーは、形状に依存するため、グローバルな畳み込み NN を用いた画像認識では精度が出ないことが判っている. このために,精度の高いセマンティックセグメンテーショ ンとジョイントで学習することにより、精度を高めるとい う手法を用いてきた [1]。

そこで、本論文では、このようなグローバルな畳み込み NN を用いるアプローチではなく、ローカルなアプローチ を用いることを考えたい. 画像を 16×16 などの画像パッチ に分割して、これらの画像パッチを集めて、血腫マーカー のクラスを判断するというアプローチである. 画像認識で この形のアプローチする方法は、トランスフォーマーなど で用いられているが、ここでは、マルチインスタンス学習の

1 九州工業大学

半教師あり学習に発展させるための準備として行いたい.

2. データについて

2.1 画像データについて

脳卒中などの疑いで頭部の CT 画像を撮影する患者に関 しては、一人の患者に対して、ある時刻において、数セット の撮影を行う.この数セットのうちの一つを選択して今回 の実験に用いている.なお、CT とは X 線を用いて頭部の断 層画像 (輪切りの画像)を撮影できる機械のことを指す.0.5 〜数ミリ幅でスライス撮影ができ、スライス数は数百〜数 千枚に及ぶこともあるが、今回は特定のいくつかの病院に おける撮影のため、これらの病院が所持する CT のスペッ クに依存して、20 枚前後のスライス数が多い.

一人の患者に対して CT 画像のスライスの枚数は患者に より異なる. これはたとえば、20 枚~32 枚などとなる. こ の場合に,一人の患者が血腫をもつか否かは,これらのスラ イスの集合が血腫をもつか否か、という形のマルチインス タンス学習を利用することにする.一方、われわれのアノ テーションでは,スライス毎にアノテーションをしている ため、通常のマルチインスタンス学習における設定である バグ (集合) に対するラベルは,インスタンス毎のラベルを 知っているために容易に用意できる.

われわれのアノテーションでは, 血腫の領域のアノテー ション (セグメンテーション用), 血腫のマーカーの種類の アノテーション (ハイポデンシティ, フルイドレベルなど), 血腫の矩形領域のアノテーション (血腫領域のアノテーショ

² 九州大学

³ 国立循環器病研究センター

ンより導出), 側脳室前角と側脳室後角 (および正中線) の交 差する点 (キーポイント検知用) などを行っている. なお, 血腫マーカーのアノテーションについては以下に特別に詳 細を述べる.

画像の前処理は以下のようにした. CT スキャンのスライ ス画像のサイズは、512×512 である。CT スキャンのデー タは、DICOM 形式で保存されており、ピクセル値の単位 はハウンズフィールド単位 (HU) である。1 つ目の前処理 として、式1のように、対象の HU 範囲を選択してコント ラストを調整した。

$$I(i,j) = \begin{cases} 0 & if I_{HU}(i,j) < a \\ \frac{I_{HU}(i,j) - a}{b - a} \times 255 & if a \le I_{HU}(i,j) \le b \\ 255 & if I_{HU}(i,j) > b \end{cases}$$
(1)

ここで、I(x)は、位置 x でのコントラスト調整後の強度 である。 $a = 0 \ge b = 80$ は、脳の CT 画像を可視化するた めに一般的に使用される。本研究では、CT スキャンを収 集したそれぞれの施設の専門医が決定したパラメータa,bを用いており、おおよそ $a = 0 \ge b = 80$ であった。

さらに、CT 画像の前処理の記事*1に従って、ノイズ除 去、骨除去、中央への位置合わせの前処理を行った。ノイ ズ除去では、CT スキャンの際に映るアーイファクトを除 去した。骨除去では、頭蓋骨部分を除去した。これは、コ ントラスト調整後の CT 画像において骨の部分が白く映り、 情報が強くなる(白は最大のピクセル値 255)と考えたた めである。中央への位置合わせでは、脳を画像の中央に平 行移動する作業を行った。

2.2 血腫マーカーのアノテーション

急性脳内血腫 (ICH) は脳小血管病 (SVD) が発展したも ので、このうち3分の1の患者においてはさらに出血が持 続する. 臨床的にこの脳内血腫の増大の可能性を初期に検 知できることは患者の治療に非常に役立つと考えられてい る. 脳血腫の増大の最も単純なモデルにおいては、まず, 初 期症状において小血管の一つが血腫を形成する.次に,二 次的な機械的な剪断損傷などを原因として出血が持続して 広がる. さらに、 ヘマトクリット値と蛋白質により密度が 個々のケースにより異なる形で凝集する.このとき、見た 目は柔組織の傷害、出血による脳浮腫、脳室系の拡大など の隣接する構造に依存し、呈する形状はこれらに依存して かなり異なる.このモデルからも示唆されるように、脳血 腫の形成は以下のような特徴をもつ.1つ目は時系列で血 腫拡大が形成されることである.2つ目は最終的な出血の 体積は周辺部の損傷した血管の個数によることである.3 つ目は拡大する方向は軸の向き通りではなく, 拡大した血 腫の形状は非定型となることである.

図 2 は Boulouis ら [4] は以下の 4 つの血腫マーカーク ラス (A) ハイポデンシティー (hypodensities), (B) マー ジンイレギュラーサイン (Intracerebral hemorrhage with irregular margins), (C) ブレンドサイン, (D) フルイドレ ベルを示す. アプローチ 1 は, この分類に従って血腫分類 タスクを上記 4 つのクラスに分類するタスクとして考える. つまり, 与えられた時刻 t における患者 h_i の脳 CT 画像列 に対して, ハイポデンシティー, マージンイレギュラーサイ ン, ブレンドサイン, フルイドレベルの 4 つのクラスに対し て分類を行なうタスクである.

2.3 血腫の部位

血腫の部位により四つの重要な出血に分類されている. 被殻出血,視床出血,小脳出血,橋出血である.(1)被殻出血 の症状には片麻痺や感覚障害などがある。レンズ核線状体 動脈と呼ばれる動脈は、中大脳動脈からの分岐動脈だが、 このレンズ核線状体動脈と呼ばれる動脈の破綻が原因で被 殻出血は起こりる。(2)視床出血の症状には血腫と反対側 の感覚障害や軽度の片麻痺などがある。後視床穿通動脈や 視床膝状体動脈の破綻が原因で視床出血は起こる.(3)小 脳が運動調整機能を行っていることを原因として,小脳出 血には回転性めまいを主とし、嘔吐、頭痛などの症状が現 れるが、四肢の麻痺は認められないという特徴がある.原 因は脳底動脈から分岐する上小脳動脈の分枝動脈の破綻に よる.(4)橋出血の場合は、意識障害や四肢麻痺、著明な両 側の縮瞳などの症状がみられる.橋出血の原因は脳底動脈 から分岐する正中穿通動脈の破綻による.

3. 手法

本論文では, 画像パッチをベースとする学習において、2 つの手法を考慮する. 1つ目の手法は, 脳血腫のマーカー のアノテーションをベースとした4つの基本クラスを画像 パッチのラベルとして、畳み込み NN を構成する方法であ る. さらに、脳血腫のマーカーではない背景画像をさらに 分割する必要がある. 背景には, 頭骨、脳室, 間隙, 背景な どの領域があり、これらもそれぞれを基本クラスとしてラ ベルと考える.

2つ目の手法は、マルチインスタンス学習を応用する学 習を用いる. 脳血腫のマーカーのアノテーションをベース とした4つの基本クラスを、バグ集合としてのラベルとす る. したがって、画像パッチのラベルは、これらの4つの基 本クラスではなく、マルチインスタンス学習のサブクラス のラベルとなる. 同様に、脳血腫のマーカーではない頭骨、 脳室, 間隙, 背景などの背景領域があり、これらもそれぞれ をバグ集合としてのラベルと考える.

3.1 グリッドのアノテーションの方法

1つ目の手法のために、パッチの確実なアノテーション

^{*1} https://vincentblog.xyz/posts/medical-images-in-pythoncomputed-tomography

を得るために、アノテーションツールを作成して、アノテー ションを行なった.明示的に確実に4クラスのうちのいず れかに属するクラスのみをアノテーションする形とした. 「確実に」とは、パッチのグリッドの約8割を占めるか否か で判断したという意味で、4クラスとは、背景、大脳皮質、 血腫、頭蓋骨の4クラスである.

CT 画像は512×512 ピクセルから成るため、これを16×16 ピクセルのパッチに分割する. グリッド状のパッチへの アノテーションを行うためのツールは図1のような形を python で作成して行なった. pygame ライブラリを用いて インタフェースを作成した.

グリッドがトグルスイッチになっていて, 白色, 緑色, 青 色, 赤色、黄色と入れ替わり、これらでアノテーションを行 う. 終了すれば, 該当するパッチのアノテーションがディ スク上に保存される. なお, 白色は該当なしだが, これはオ リジナルのデータのままで更新はされない.

- (1) 患者フォルダ*²に対してそれぞれの画像を 16×16 の パッチに分割する(例:xxxx_x0_y0.png)。ここで、 元画像へ 16×16 のグリッド線を書き込んだ画像を xxxx_grid.png として保存する。1. で生成したファ イルは split_pic フォルダに保存する。
- (2)パッチに分けた画像を16×16で並べ1枚の画像に見 えるように配置する。ここで、該当パッチの画像をク リックし枠の画像を変更することで元画像の名前にラ ベルを付与した画像を新たに保存する。ここで、該当 なしは白枠、背景は緑枠、大脳皮質は青枠、血腫は赤 枠、骨は黄枠でラベルを付与する。(背景のパッチ画像 xxxx_x0_y0.pngの場合:xxxx_x0_y0.A.pngとし て保存する)

このアノテーションで作ったデータの統計は図1の通り である.17名の患者に対して行った。

	パッチ総数	背景	大脳皮質	血腫	頭蓋骨
全体	102960	32109	3225	330	733
実験で	-	3225	3225	330	733
の全体					
データ					
実験で	-	3225*.7	3225*.7	330*.7	733*.7
の訓練					
データ					
実験で	-	3225*.3	3225*.3	330*.3	733*.3
のテス					
トデー					
タ					
事 1 パッチのマノテーションの統計					

表1 バッナのアノナー -ションの統計

*² 患者フォルダは, 患者 ID と CT 撮影日時の同一のもので構成さ れる.

図1 グリッド状のパッチへのアノテーションを行うためのツール

3.2 バグのアノテーションの方法

バグのアノテーションは、脳外科医が行なってアノテー ションを行った。

3.3 ローカルなグリッド分類器

図3は,マルチインスタンス分類とここでの分類(ロー カルなグリッド分類)の違いを示す.マルチインスタンス 分類では,バグと呼ばれる集合にクラスのラベルが貼られ, 個々のインスタンスのラベルは未知とする.この状態で, 個々のインスタンスのラベルを予測することを目的とする.

一方, ここでのローカルなグリッド分類では, パッチを直接4つのクラスへのマルチクラス分類を行う (これは通常の分類と同じである). この分類結果のうち, 血腫の分類が1つ以上あれば、その集合としてのバグの血腫の分類を1とする.

ResNet18 をベースとした分類器を用いてマルチクラス 分類器を作成した. クラス不均衡問題に対応するために, ク ラス毎のインスタンス数に応じて損失に重みをかけた.

ResNet18 をベースとした分類器を用いてマルチクラス 分類器をマルチラベルという形でも作成した.マルチラベ ル分類とは、一つの対象に対して複数のラベルが割り当 てられる分類問題である。一方、1つのラベルのものをシ ングルラベル分類と呼ぶ.マルチラベル分類がシングルラ ベル分類と大きく異なる点は、予測の際にラベル間の共 起関係を推定に生かす形で,精度改善を見込むことがでで きることである.このため、ラベル間の関係を予測にうま く利用することができるモデルが必要となる。これには, BCEWithLogits で出力を6つのシグモイド活性化関数と

図 2 ローカルなグリッド分類 (上図) とマルチインスタンス分類 (下図) の違い

した.

3.4 実験結果

まず、訓練により構築した分類器の訓練精度は 99.1%で、 検証精度は 98.7%であった.テスト精度は 98.6%であった.

不均衡問題の設定では、訓練により構築した分類器の訓 練精度は 99.2%で、検証精度は 98.8%であった. テスト精 度は 98.7%であった.

マルチラベルでかつ不均衡問題の設定では、訓練により 構築した分類器の訓練精度は 99.1%で、検証精度は 98.8% であった. テスト精度は 98.7%であった.

図 3 ローカルなグリッド分類での血腫のパッチの個数 (不均衡問題 の設定) 画像に骨がばらついている場合 (一列目の画像), ノイズ のために血腫と判定されるパッチが多い.一方, 三列目、四 列目の画像のようにノイズらしきものも血腫もない画像で は比較的血腫と判定されているパッチの個数は少ないもの の, 骨が原因で若干の個数を数えているように見える.実際 に血腫の存在する二列目の右側4枚の画像においては, 妥 当に血腫の数が多くカウントされていることが判る.

以上のことから, 32 ピクセル×32 ピクセルという格子の 大きさが大きいことが影響していると思われ, もう少し小 さなサイズの格子での実験を行うべきではないかと思える.

図 4 ローカルなグリッド分類での血腫のパッチの個数 (マルチラ ベル)

図4も傾向は同じだが,全体的に性能が落ちている.パッ チをシングルラベルで判定する方が性能が良いという結果 を得たことになる.但し、これは若干,予想とは反した結 果となった.

3.5 結論

本論文においては, 画像認識をローカルな形でパッチで 行い、画像をパッチのバグとして見る形の学習を見てみた. 動機はマルチインスタンス学習を直接やる場合の負荷が大 きいために, ローカルな形のパッチで行う半教師あり学習 的な形で負荷の減少を目指す目的をもつ. また、マルチラ ベル学習の設定の効果も準備したいものの一つであり、格 子の大きさを妥当に小さくすることも課題であろうという 考察を行うことができた.

参考文献

[1] Hokuto Hirano, Tsuyoshi Okita. Classification of Hematoma: Joint Learning of Semantic Segmentation and Classification. https://arxiv.org/abs/2103.17172. 2021.

- [2] 大北剛,中山俊太朗,山本周平,森山幹太,平野北斗,有村公 一,飯原弘二,脳血腫の急成長の予測,第12回 AIM 合同研 究会, 2022.
- [3] Blacquiere D, Demchuk AM, Al-Hazzaa M, Deshpande A, Petrcich W, Aviv RI, Rodriguez-Luna D, Molina CA, Silva Blas Y, Dzialowski I, Czlonkowska A, Boulanger JM, Lum C, Gubitz G, Padma V, Roy J, Kase CS, Bhatia R, Hill MD, Dowlatshahi D; PREDICT/Sunnybrook ICH CTA Study Group. Intracerebral Hematoma Morphologic Appearance on Noncontrast Computed Tomography Predicts Significant Hematoma Expansion. Stroke. 2015 Nov;46(11):3111-6. doi: 10.1161/STROKEAHA.115.010566. Epub 2015 Oct 8. PMID: 26451019
- [4] Boulouis G, et al., Association between hypodensities detected by computed tomography and hematoma expansion in patients with intracerebral hemorrhage. JAMA Neurol 2016;73:961-968. 2016.
- [5] Fujii Y, Tanaka R, Takeuchi S, Koike T, Minakawa T, Sasaki O. Hematoma enlargement in spontaneous intracerebral hemorrhage. J Neurosurg. 1994 Jan;80(1):51-7. doi: 10.3171/jns.1994.80.1.0051. PMID: 8271022
- [6] Davis SM, Broderick J, Hennerici M, Brun NC, Dringer MN, Mayer SA, et al. Hematoma growth is a determinant of mortality and poor outcome after intracerebral hemorrhage. Neurology 2006; 66: 1175 - 81.
- [7] Kazui S, Naritomi H, Yamamoto H, Sawada T, Yamaguchi T. Enlargement of spontaneous intracerebral hemorrhage: incidence and time course. Stroke 1996; 27: 1783 - 7.
- [8] Kazui S, Minematsu K, Yamamoto H, Sawada T, Yamaguchi T. Predisposing factors to enlargement of spontaneous intracerebral hematoma. Stroke 1997; 28: 2370 -5.
- [9] Fujii Y, Takeuchi S, Sasaki O, Minakaw a T, Tanaka R. Multivariate analysis of predictors of hematoma enlargement in spontaneous intracerebral hemorrhage. Stroke 1998; 29: 1160 - 6.
- [10] Broderick JP, Diringer MN, Hill MD, Brun NC, Mayer SA, Steiner T, et al. Determinants of intracerebral hemorrhage growth: an exploratory analysis. Stroke 2007; 38: 1072- 5.
- [11] Wada R, Aviv RI, Fox AJ, Sahlas DJ, Gladstone DJ, Tomlinson G, et al. CT angiography "spot sign" predicts hematoma expansion in acute intracerebral hemorrhage. Stroke 2007; 38: 1257- 62.