V7 MY =27 L% 100—11
(1994. 9. 8)

YI DT T 4= DIEERICER LICRREF Ny TEF I

WBHER—, WIHK

BRRHETHME ST 27 L T¥R
T 680 BELTHEAILATET 4-101

KED Y 7 b 2 THRRBICH T BT X N LETOT/ Ny 7 EEIE, BICHIICSEEh
TWBERRSEN. METEHE, RRINAV T MY 2T 74—V bDFT XTI -
BREZINTOADITIREL., —fIC, THERTELT /Ny FERR AFETIE, R
EN/T 4=V POBEICELTUSEI LN E NI RELT Ny VR EZE LI
T hU L TEEERERETMIODOTERT S, JITHE, 57X MR TICBIEX
NIBBET + — NV MOERTHREREERLT, JO0EFIVERILITERICLDER
T5. £, TOEFINCESOT, VI MY 2 7TOEEMFIICE A EEBNREAE
U, BUEERT.

An Imperfect Debugging Model Based on the Number of
Corrected Software Faults

Koichi Tokuno, Shigeru Yamada

Department of Social Systems Engineering
Faculty of Engineering, Tottori University
Tottori, 680 Japan

Actual debugging actions during the testing phase in the software development are not
always performed perfectly. In other words, all detected software faults are not corrected
and removed certainly. Generally, this is called imperfect debugging. In this paper, we
discuss a software reliability growth model considering imperfect debugging that the faults
are not always corrected/removed when they are detected. Defining a random variable
representing the cumulative number of faults corrected up to a specified testing time, this
model is described by a semi-Markov process. We derive several quantitative measures for
software reliability assessment and show their numerical examples.

1. Introduction

Most software reliability growth models pro-
posed so far are based on the assumption of per-
fect debugging that all faults detected during the
testing and operation phases are corrected and
removed perfectly (see Yamada [9 ~ 11]). How-
ever, debugging actions in real testing and opera-
tion environments are not always performed per-
fectly. For example, type misses invalidate the
fault correction activity or fault removal is not
carried out precisely due to wrong analysis for
the obtained testing results (see Shooman [8}).
That is, they are in imperfect debugging envi-
ronment. Therefofe, the faults are not always
corrected and removed perfectly when they are
detected. Then, it is interesting to develop a soft-
ware reliability growth model considering imper-
fect debugging environment (cf. Ohba and Chou
[6] and Shanthikumar {7]). Such an imperfect de-
bugging model is expected to estimate reliability
assessment measures more accurately.

In this paper, we discuss a software reliabil-
ity growth model with imperfect debugging that
the faults are not corrected/removed certainly
when they are detected. Defining a random vari-
able representing the number of faults corrected
by a given time point, this model is formulated
by a semi-Markov process (see Goel and Oku-
moto [2] and Ross [6]). We derive various inter-
esting quantities for software reliability measure-
ment and show their numerical illustrations.

2. Model Description

For imperfect debugging environment, the
software reliability model developed in this pa-
per is based on the following assumptions.

1. Each fault which causes a software failure is
corrected perfectly with probability p (0 <
p < 1), while it is not corrected with proba-
bility ¢(= 1—p) (see Shanthikumar {7]). We
call p the perfect debugging rate.

2. The hazard rate is constant between soft-
ware failures caused by a fault in the soft-
ware system, and geometrically decreases
whenever each detected fault is corrected
(see Moranda [3]).

3. The probability that two or more software
failures occur simultaneously is negligible.

4. No new faults are introduced duting the de-
bugging. (In general, this assumption may
not be true. However, Goel [1] claimed that
if the additional faults introduced constitute
a very small fraction of the fault population,
the practical effect on model results would
be minimal.) At most one fault is removed
when it is corrected and the correction time
is not considered.

Now, we consider a stochastic process (Y,
T) where fault count vector Y= {Y(I); | =
1,2,---} and time series vector T= {T}; | =
1,2,---} (see Ross [6]). Let i = 0,1,2,--- be
the state space, where ¢ represents the cumula-
tive number of corrected faults. Then, the events
{Y(l) = i} means that i faults have been cor-
rected at the I-th software failure occurrence and
T, represents the I-th software failure occurrence
time, where Y(0) = 0 and To = 0. A sample
function of (Y, T') is shown in Fig. 1. For exam-
ple, Fig. 1shows that a fault is detected at T3 but
the fault correction fails (i.e. the fault is imper-
fectly debugged). Further, let X(¢) be a random
variable representing the cumulative number of
faults corrected up to the testing time ¢. Then,
X (t) forms a semi-Markov process (see Goel and
Okumoto [2]). That is, from assumption 1, when
i faults have been corrected by arbitrary testing

time 1,

i (with probability ¢)
i+ 1 (with probability p),

X(t) = { (1)

(see Fig. 2). Further, from assumption 2, when

i faults have been corrected, the hazard rate for

the next software failure occurrence is given by

z(ty= Dk (i=0,1,2,--; D>0, 0< k < 1),
()

where D and k are the initial hazard rate and

the decreasing ratio, respectively. Noting that
some specified functions are executed frequently,
(2) reflects that the faults cause software failures
with high frequency in execution during the early
stage of the testing and the hazard rate decreases
rapidly by correcting them. This assumption is
a practically modified one (see Musa et al. [4]).
Early imperfect debugging models such as Goel
and Okumoto [2] and Ohba and Chou [5] often
assume that the hazard rate changes at each fault
correction by. a constant amount. Then, the dis-
tribution function for the next software failure
occurrence time is given by

Fi(t) =1—e~P¥t, 3)

Let Qij(t) denote the one step transition
probability that after making a transition into
state i, the process {X(Z), t > 0} makes a tran-
sition into state j by time ¢. Then, Q;;(t), which
represents the probability that if i faults have
been corrected at time zero, j faults are corrected
by time ¢ after the next failure occurs, is given
Aby |

Qij(t) = Pij(1 = e~ P*), (4)
where P;; are the transition probabilities from
state 7 to state j and given by

tribution function of the first passage time from

state i to state n. In other words, G; . (t) is the

probability that n faults are corrected in the time

interval (0, t] on the condition that i faults have

been already corrected at time zero. Then, we

get the following renewal equation:

Gin(t)=Qiit1 * Gig1,n(t) + Qi * Gin(t)
(i=0,1,2, ---, n—=1), (6)

where * denotes a Stieltjes convolution and
Gun(t)=1(n=1,2,--1).

We use Laplace-Stieltjes (L-S) transforms
to solve (6), where the L-S transform of G;.(t)

is defined as

Gin(s) = /O ” e™*'dG; n(1). (N

From (6) we get

Gin(8) = Qi ir1(5)Gizinls) + Qi,i(5)Gin(s)
(=0,1,2 -, n=1). (8

From (4) the transforms of Q;;4+1(t) and @;.:(t)

are respectively given as

Qiisr(s) =

Qiils) =

pDk}

s+ Dk¥’ ©)
gDk}

s+ Dk’

(10)

Substituting (9) and (10) into (8) yields

Ginls) =

pDE

s+ pDk’
(i=0,1,2,---,n—1).

é,-_,_l,,.‘(s)
(11)

g(ij=1)
Pj=S{p(i=i+1) (i,i=0,1,2,---). (5)
0 (elsewhere)
3. Derivation of Reliability
Measures
3.1 Distribution of the First Pas-

sage. Time to the Specified
Number of Corrected Faults

Suppose that i faults have been corrected

at some testing time. Let G;n(t) denote a dis-

Solving (11) recursively, we obtain the L-S trans-
form of G (1) as

=~ _ . pDK
Go,n(s) - ’I;'!; s +-pDk}
n-1 :
_ . _pD¥
= ;Ak"’"s-l-pDk" (12)
where
Ak,0,1 = 1
in(n-1)-i
Akin = ,,k_l
B IGEED) (13)
3=0
R
(n=23,---, i=0,1,2,---,n-1)

By inverting (12) with respect to ¢ and rewriting
Go,n(t) as Gn(t), we have the distribution func-
tion of the first passage time when n faults are
corrected

n-1

Galt) = Y Arin(1—=e?PHY), (14)
i=0
where Go(t) = 1.

Distribution of the Number of
Faults Corrected Up to a Spec-
ified Time

3.2

Let S, (n = 1,2,---) be random variables
representing the n-th successful correction time
of detected faults. Since X(t) is a counting pro-
cess (see Fig. 1), we have the following equivalent

relation:
{Sa <t} <= {X(®) 2 n}. (15)
Therefore, we get
Pr{S, <t} = Pr{X() >n}. (16)

Let Pa(t) denote the probability that n faults
are corrected up to testing time t. From (14)
and (16), we obtain the probability mass function
Pa(t) as

Pa(t) Pr{X(t) = n}

Gu(t) = Guya(t).

Il

an

Suppose that the initial fault content in the
system prior to the testing, N, is known. Using
(17), we can derive the expectation and variance
of X (t), respectively as

N
E[X(t) | N]=_Ga(t), (18)
n=1

N N 2
Var[X(t) | N] = E(zn—l)c;,,(t)—{z G,.(t)}

n=1 n=1 (19)
where it is noted that Py(t) = Gn(t) since
GN.H(t) = 0.

3.3 Expected Number of Faults
Detected Up to a Specified
Time

We introduce a new random variable Z(t)
representing the cumulative number of faults de-
tected up to testing time t. Let M;(t) be the
expected number of faults detected up to time ¢
on the condition that ¢ faults have been already

corrected at time zero, i.e.

Mi(t) =E[Z(t) | X(0) =4, (20

which is called a Markov renewal function. In
similar to the preceding subsection, supposing
that the initial fault content N is known, we ob-
tain the following renewal equations:

Mi(t)=Fi(t) + Qi+ Mi(t) + Qi g1 * Miga(2)
(i=0$1|2)"';N_1)) (21)
where My(t) = 0. Using the L-S transforms of
M) (1=0,1,2,---,N — 1), we get from (12)
N n-1

1 pDk?
Sl onee

n=1{=0
N
= 1560
pn:l

Inverting (22) with respect to t and rewriting
Mo(t) as M(t]| N), we have

Mo(s) =

(22)

1l
| =
g
2

M(t| N)

- %E[X(t) [N, (23)

Now we consider that all faults detected by
the testing are divided into two types. One are
the faults which are successfully corrected, and
the other are the faults detected again due to im-
perfect debugging. Then, the expected number
of faults debugged imperfectly is given by

D(t | N) M(t| N) - E[X(2) | N]

= %E[X(t) | N]. (24)

3.4 Distribution of the Time be-
tween Software Failures

Let X; (I = 1,2,---) be a random variable
representing the time interval between the (I—1)-
st and the I-th software failure occurrences and
&®;(z) be a distribution function of X;. It is noted
that X; depends on the number of the faults cor-
rected up to the (I — 1)-st software failure occur-
rence, which is not explicitly known.

Further, let C;'be a random variable repre-
senting the number of faults corrected up to the
(! = 1)-st software failure occurrence. Then, C;
follows a binomial distribution having the follow-

ing probability mass function:

-1\ . .
PY{CIZi}=(.)p'q’-l-'
1
(i=0,1,2,---,1=-1),

(25)

| —
where (. 1) is a binomial coefficient denoted
i

-1
as (.) = (-1 -1-19)k!]. From (25),
1
at the (I — 1)-st software failure occurrence, the
expected number of corrected faults is given by

p(l=1).
Further, it is evident that

Pr{X; <z | C) =i} = Fi(z), (26)

which is given by (3). Accordingly, we can get

the distribution function for X; as

&(z) =Pr{X; < z}
-1 '
ZZPF{XI <z|C =i}Pr{C =1}

i=0

-1 _ . . ;
=3 (") B e an

i=0
Then, we have the reliability function for X, as

Ri(2)=Pr{X; > z}
=1- @[(2)

-1
-1 i I—1—i —Dk'z
= ()p’ql 1=ig=Dk'z = (98)

i=0 4

The expectation of random variable X is de-
fined by

E[X[] = /ooo R;(a:)d:c (29)

We call (29) the mean time between software fail-

ures (MTBF). From (28), we can derive E[X|] as

k+g)?
E[X)] = W—Di)._. (30)
Apparently, the following inequality holds for ar-

bitrary natural number I:

E[X]<EXi] (=12 (31)

That is, a software reliability growth occurs

whenever a software failure is observed.

4. Numerical Examples

Using the imperfect debugging model dis-
cussed above, we show numerical illustrations for
software reliability measurement.

The distribution functions of the first pas-
sage time to the specified number of corrected
faults, G,(t) in (14), are shown in Fig. 3 for var-
ious perfect debugging rates, p’s, where n = 10,
D = 0.2, and £ = 0.9. We can see that the
smaller perfect debugging rate p becomes, the
more difficult it is to correct faults.

The expected numbers of faults corrected up
to testing time ¢, E[X(¢) | N] in (18), for various
p’s are shown in Fig. 4 where N = 20, D = 0.2,
and k = 0.9. The variances of the number of

faults corrected up to testing time ¢, Var[X(t) |

NJin (19), for various p’s are shown in Fig. 5
where N = 20, D = 0.2, and k& = 0.9. As shown
in Fig. 5, Var[X(t) | N] is a convex function with
respect to testing time ¢t with

Var[X(0) | N] = Var[X(o0) | N] = 0. (32)

This means that the correctability of faults in
debugging is unstable during the early stage of
the testing, and as the testing is in progress, it
becomes stable. As shown in Fig. 5, we can
see that the smaller the perfect debugging rate p

becomes, the more difficult it is to stabilize the
fault-correctability.

Further, the coefficients of variation (CV) of
X(t), ev[X(2) | N], defined as

_ VValX() [N]
cv[X(2) | N) = BX@) | N (33)
for various p’s are shown in Fig. 6 where N = 20,
D = 0.2, and & = 0.9. As shown in Fig. 86,
ev[X(t) | N] is a monotone decreasing function
with respect to testing time t.

The expected number of faults detected up
to testing time ¢, M (¢ | N) in (23), is shown in
Fig. 7 along with the expected number of im-
perfect debugging faults, D(t | N) in (24), where
N =30,D =02 k=09, and p=0.9. In this

case,

M(co | 30) = 33.3, D(oo|30) = £ .30 =33.3¢.

(34)
Then, (100¢)% of the cumulative number of
faults detected eventually is imperfectly de-
bugged.

The reliability functions, Ri(z) in (28), for
various {’s are shown in Fig. 8 where D = 0.2,
k =0.9, and p = 0.9, and the values of MTBF for
various I’s are shown in Table 1. Fig. 8 and Table
1 show that a software reliability growth during

. the testing occurs whenever a software failure oc-

curs.

5. Conclusion

In this paper, from a viewpoint that whether
a fault correction activity succeeds or not is un-
certain, based on a semi-Markov process, we have
developed a software reliability growth model for
imperfect debugging environment in which the
faults detected by testing are not always cor-
rec‘ted/removed. Various interesting quantities
for software reliability measurement have been
derived from the model and their numerical ex-
amples have been illustrated.

Acknowledgment

Shigeru Yamada is pleased to acknowledge
the support of a Grant-in-Aid for Scientific Re-
search from the Ministry of Education, Science
and Culture of Japan under Grant No. 06680323.

References

[1] A.L. Goel, “Software reliability models: As-
sumptions, limitations, and applicability”,
IEEE Trans. Software Engineering, vol. SE-
11, no. 12, pp. 1411-1423, Dec. 1985.

[2] A. L. Goel and K. Okumoto, “An Imper-
_ fect Debugging Model for Reliability and
Other Quantitative Measures of Software
Systems”, Technical Report No. 78-1, De-
partment of Industrial Engineering and Op-
erations Research, Syracuse University, New
York, 1978.

[3] P. B. Moranda, “Event-altered rate models
for general reliability analysis”, IEEE Trans.
Reliability, vol. R-28, no. 5, pp. 376-381,
Dec. 1979.

[4] J. D. Musa, A. Iannino, and K. Okumoto,
“Software Reliability: Measurement, Predic-
tion, Application”, McGraw-Hill, New York
(1987).

[5] M. Ohba and X. Chou, “Does imperfect de-
bugging affect software reliability growth ?”,
Proc. 11th Int. Conf. Software Engineering,
pp- 237-244, 1989.

(6] S. M. Ross, “Stochastic Processes”, John
Wiley & Sons, New York, 1983.

[7] J. G. Shanthikumar, “A state- and time-
dependent error occurrence-rate software re-
liability model with imperfect debugging”,
Proc. National Computer Conf., pp. 311-
315, 1981.

[8] M. L. Shooman, “Software Engineering:
Design, Reliability, and Management”,
McGraw-Hill, New York, 1983.

{91 S. Yamada, “Software Reliability Assess-
ment Technology” (in Japanese), HBJ
Japan, Tokyo, 1989.

[10] S. Yamada, “Software quality/reliability
measurement and assessment: Software re-
liability growth models and data analysis”,
J. Information Processing, vol. 14, no. 3, pp.
254-266, 1991.

[11] S. Yamada, “Software Reliability Mod-
els: Fundamentals and Applications”, (in
Japanese), JUSE Press, Tokyo, 1994.

X
Y(5)
V() o .
Y(2)=Y(3), :
Y(1) et . ~
H——He—H—X%
0 T T T T
Testing Time

Fig. 1. A sample function of (Y, T).

Fig. 2. A diagrammatic representation of transitions
between states of X(t).

Testing Time

Fig. 3. Dependence of perfect debugging rate p in G (t)
(D=0.2, k=0.9).

20

"
@

[=4
o

E[X(ni20]

200 400 600 800 1000

Testing Time

Fig. 4. Dependence of perfect debugging rate p in
E[X(1)120] (D=0.2, k=0.9).

Var[X(1)120]

100 200 300 400 500 600 700
Testing Time

Fig. 5. Dependence of perfect debugging rate p in
Var[X(1)120] (D=0.2, k=0.9).

0.4

cv{X(1)120]

o
-

—
200 400 600 800 1000

Testing Time

Fig. 6. Dependence of perfect debugging rate p in
cv[X(1)i20] (D=0.2, k=0.9).

Fig. 8. Dependence of number of failures ! in software
reliability R (x) (D=0.2, k=0.9, p=0.9).

35

p2}
3 30
.
2 2
g M(30) (TOTAL)
S 20
73]
3 15
3 10 D(1130) (IMPERFECT DEBUGGING)
Q2
E
é’ 5
500 1000 1500 2000
Testing Time

Fig. 7. M(430) and D(t130) (D=0.2, k=0.9, p=0.9).

Table 1. MTBF E[X]] (p=0.9, D=0.2, k=0.9).

E[X)
5.000
5.500
6,050
6.655
7.321
8.053
8.858
9.744
1072
11.79

O|RIN|jOi|DIWIN =]~

-
[=]

