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Abstract: In this paper, a mixed precision variant of the GMRES(m) method using FP64 and FP32 is investigated.
Through numerical experiments for various test matrices and different settings of the restart frequency m, its numerical
behavior is examined in detail and compared with that of the conventional GMRES(m) method using only FP64. From
the obtained numerical results, it is confirmed that if a problem is solved by the conventional GMRES(m) method,
basically the mixed precision GMRES(m) can also solve it. In addition, in the case of using small m, the number
of the total iterations is almost equivalent between the two methods. However, when m grows, a different tendency
is observed; the number of the iterations decreases in the conventional methods but increases in the mixed precision
method. These results and observations provide new insights of the mixed precision GMRES(m) method, which will
be helpful for the efficient use in applications and the further improvement of the method.
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1. Introduction

Numerical methods for solving problems in linear algebra, e.g.,
system of linear equations, eigenvalue problem, singular value
decomposition etc., have various applications in engineering and
information science. Among them, linear solver, which solves a
system of linear equations, is one of vital building blocks in sci-
entific computations, and its computational time is usually dom-
inant. Thus, more and more efficient linear solvers have been
strongly required for accelerating application programs.

Traditionally, double-precision floating-point number (also
called FP64 or float64) has been standard in most scientific com-
putations, and FLOPS (Floating-point Operations Per Second),
more precisely, FLOPS for FP64 operation, has been used as
a metric for the performance of a CPU (or computer system).
However, it is getting difficult to improve FP64 FLOPS of a sin-
gle processor due to the limitation of power budget. In addi-
tion, the demand in market has also changed; some new appli-
cations, e.g., machine learning applications, do not strictly re-
quire FP64 and accept low precision computing that uses single-
precision floating-point number (FP32) or half-precision floating-
point number (FP16). These situations have triggered a paradigm
shift in computer architectures; exploiting the high ability of low
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precision computing will be crucial, and some with specified unit
for low precision computing (e.g., NVIDIA GPU with Tensor
Cores) are actually now available.

In the case of using hardware equipped with specified unit for
low precision computing, it is clear that computations mainly
based on FP32 or FP16 have a great advantage compared with
those based on FP64. Even on a standard CPU platform, low pre-
cision (currently, FP32) computing has two benefits. The first one
is the reduction of the data transfer cost among memory hierar-
chy. When an application is memory-bound, this advantage has a
significant impact on the performance. In addition, less memory
footprint allows better use of the cache memory, which further
improves the performance. The second one is the increase of the
performance of the SIMD operation; the number of elements per-
formed by single instruction increases. In a computation-bound
application, this advantage can improve the performance.

Considering the fact that numerical methods in linear algebra
have been widely used in many applications, one of promising
approaches for exploiting the advantages of low precision com-
puting in applications is developing a new method that can exploit
low precision computing and provide computed results with the
same accuracy as by traditional methods using only FP64. It will
be easy to replace a current method with such a new method in
application programs, and the performance benefit will be easily
obtained.

The key idea in developing such a method is mixed precision
computing, in which both the standard precision and low preci-
sion computing are combined; in the situation considered in this
paper, FP64 and FP32 are combined. In this paper, the target
problem is a system of linear equations whose coefficient matrix
is large and sparse, and a mixed precision variant (using FP64 and
FP32) of the GMRES(m) method, which is one of famous Krylov
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subspace methods, is discussed.
In several studies [3], [4], [25], [26], [34], the effectiveness of

applying mixed precision computing to the GMRES(m) method
has already been presented; for some test problems, it is shown
that a mixed precision GMRES(m) solver using FP64 and FP32
outperforms the traditional GMRES(m) solver using only FP64 in
terms of the execution time in CPU or GPU environments. How-
ever, the numerical behavior of the mixed precision GMRES(m)
method has not been sufficiently clarified yet.

This study aims for investigating the numerical behavior of the
mixed precision GMRES(m) method using FP64 and FP32 in de-
tail through numerical experiments. For various test matrices,
with different parameter settings (e.g., the restart frequency m),
the behavior of the mixed precision GMRES(m) is investigated
and compared with that of the traditional GMRES(m) using only
FP64. In addition, typical results are analyzed in detail with the
residual norm histories. Presented numerical results and observa-
tions will be helpful for the efficient use of the method in appli-
cations and the further improvement of the method.

The rest of the paper is organized as follows: in Section 2, re-
lated work is summarized. In Section 3, the GMRES(m) method
and the derivation of its mixed precision variant are reviewed. In
Section 4, the mixed precision GMRES(m) method using FP64
and FP32 is theoretical analyzed. In Section 5, the results of the
numerical experiments are presented. Finally, in Section 6, the
conclusion remarks are given.

2. Related Work

There are many studies on numerical linear algebra methods
that utilize mixed precision computing. The paper by Abdelfattah
et al. [1] provides a good survey including studies regarding the
recent hardware trend.

In numerical linear algebra, mixed precision computing has
been used in the form of iterative refinement. As a technique
to improve the accuracy of the computed solution of a linear sys-
tem (mainly in an ill-conditioned case), mixed precision meth-
ods have been widely known [14], [17], in which higher precision
computing than the standard precision (usually FP64) is partially
used. It is worth noting that also for other problems than linear
systems, similar methods can be found: for example, symmetric
eigenvalue problems [29], [30] and inverse LU and QR factoriza-
tions [28].

For the purpose of accelerating the solution process of linear
systems, mixed precision methods using lower precision com-
puting than the standard precision have been studied more ac-
tively as the gap between the performance of the standard and
lower precision computing becomes larger. In the late 2,000 s,
GPGPU became widespread in scientific computations, and nu-
merical methods that can utilize FP32 attracted much attention;
the paper by Baboulin et al. [5] provides a summary. For dense
linear systems, the effectiveness of the iterative refinement based
method using the LU factorization computed in FP32 was pre-
sented [9], [24]. For sparse linear systems, the performance
of the iterative refinement using the sparse LU factorization in
FP32 was shown [8]. Approaches of using preconditioners per-
formed in FP32 for Krylov subspace methods were also re-

ported [8], [20], [33].
In recent years, for linear systems, mixed precision methods

based on iterative refinement have been more actively studied.
Carson and Higham presented a new rounding error analysis and
developed a new method so-called GMRES-IR based on their
analysis [10]. They also presented the GMRES-IR method us-
ing three precisions, e.g., FP64, FP32, and FP16, with its the-
oretical analysis [11], which was extended to least square prob-
lems [12]. Higham et al. improved the GMRES-IR method for
general linear systems [19] and for symmetric positive definite
problems [18], where the positive definite property should be con-
sidered in low precision Cholesky factorization. Haidar et al. re-
ported the early performance results using FP16 provided by Ten-
sor Cores on NVIDIA GPU [16], and Blanchard et al. presented
error analysis of the mixed precision block FMM operation by
Tensor Cores [7], which is a building block in studies on mixed
precision methods using Tensor Cores. Based on the above stud-
ies, a new benchmark test, namely HPL-AI *1, was designed for
measuring the low precision computing performance of super-
computer systems; for example, it was already performed on the
supercomputer Fugaku [23]. It is worth noting that the GMRES-
IR method employs the full LU factorization computed in low
precision as a preconditioner and is assumed to converge within a
few iterations. Thus, although it includes the term “GMRES”, it
is essentially different from the GMRES method used in solving
sparse linear systems.

In the context of accelerating the Krylov subspace methods
for solving sparse linear systems, a mixed precision variant of
the GMRES(m) method using FP32 and FP64 was presented by
Turner and Walker [34]. Anzt et al. presented the performance
results on a GPU platform [3], [4]. Recently, Lindquist et al.
have provided detailed performance results of both the unprecon-
ditioned and preconditioned mixed precision GMRES(m) meth-
ods on a modern CPU platform [25], [26]. The evaluation on a
modern GPU platform has been also reported by Loe et al. [27].
Algorithms presented in these studies are essentially equivalent;
they are all based on the structure of iterative refinement in the
GMRES(m) method, which is reviewed in Section 3. Various ex-
amples of accelerating the GMRES(m) method by utilizing FP32
have been shown in these studies, which confirm the usefulness of
the mixed precision GMRES(m) method. However, these papers
presented almost only successful results, and the whole picture of
the method seems to be still not clear, which is the motivation of
this paper.

Also for other iterative methods for sparse linear systems, e.g.,
the CG method, the use of low precision computing was stud-
ied [2], [15]. In these studies, approaches based on iterative re-
finement were considered. However, different from the situa-
tion in the GMRES(m) method, target methods such as the CG
method are generally performed without restart, which means
that the methods do not have the structure of interactive refine-
ment. Thus, the effectiveness of the developed mixed precision
methods is limited compared with the original methods.

*1 https://hpl-ai.org/
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3. Review of the GMRES(m) and Mixed Preci-
sion GMRES(m) Methods

In this section, a brief introduction of the GMRES(m) method
is first given. Then, the mixed precision GMRES(m) is shown
together with the idea behind its derivation.

3.1 The GMRES(m) Method
The GMRES (Generalized Minimal RESidual) method [32],

proposed in 1986 by Saad and Schultz [31], is one of standard
iterative methods for solving a linear system with a large, sparse
and general (non symmetric) coefficient matrix. In this paper, we
consider solving a system of linear equations

Ax = b, (1)

where A ∈ Rn×n is the coefficient matrix, x ∈ Rn is the solution
vector and b ∈ Rn is the right-hand side vector.

Let xk be an approximate solution of the linear system (1) ob-
tained at the k-th iteration of the GMRES method. Given an initial
guess x0, the GMRES method finds an approximate solution xk

from the affine space x0 + Kk(A, r0), where r0 = b − Ax0 and
Kk(A, r0) = span{r0, Ar0, A2r0, . . . , Ak−1r0}, which is called the
Krylov subspace.

In a typical algorithm of the GMRES method, an orthonormal
matrix Vk =

[
v1 v2 · · · vk

]
∈ Rn×k, whose column vectors

form an orthogonal basis of Kk(A, r0), and an upper Hessenberg
matrix

H̃k =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1,1 h1,2 · · · h1,k

h2,1 h2,2 · · · h2,k

h3,2 · · · h3,k

. . .
...

hk+1,k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ R(k+1)×k (2)

are computed by the Arnoldi process involving sparse matrix vec-
tor multiplication (SpMV) and the modified Gram-Schmidt or-
thogonalization (MGS). The approximate solution xk is obtained
as

xk = x0 + Vkyk, (3)

where yk is determined so as to minimize the 2-norm of the resid-
ual vector rk = b − Axk:

yk = arg min
y∈Rk

‖rk‖2

= arg min
y∈Rk

‖b − A(x0 + Vky)‖2

= arg min
y∈Rk

‖r0 − AVky‖2. (4)

Using the relation

AVk = Vk+1H̃k, (5)

the minimization problem (4) can be transformed as follows:

min
y∈Rk
‖r0 − AVky‖2 ⇔ min

y∈Rk
‖r0 − Vk+1H̃ky‖2

⇔ min
y∈Rk
‖V�k+1r0 − H̃ky‖2

⇔ min
y∈Rk
‖βu − H̃ky‖2, (6)

Algorithm 1 GMRES(m)
Input: x0: initial guess, ε: convergence criterion, A; coefficient matrix, b:

right-hand side vector, m: restart frequency, maximum number of total

inner iterations

1: repeat

2: r0 = b − Ax0

3: β = ‖r0‖2
4: if β/‖b‖2 ≤ ε then return x0

5: v1 = r0/β

6: Compute Vm+1 and H̃m by the m-step Arnoldi process with A and v0.

7: Compute ym from β and H̃m.

8: xm = x0 + Vmym

9: x0 = xm

10: until attain the maximum number of total inner iterations

Output: x0

where β = ‖r0‖2 and u = [1, 0, . . . , 0]� ∈ Rk+1. In the standard
algorithm, the minimization problem (6) is solved by the QR fac-
torization based on the Givens rotation.

The GMRES method has a good convergence property, how-
ever, both the computational cost per iteration and the memory
footprint grow as the number of iteration (i.e., k) increases. Due
to this issue, naively using the GMRES method for solving a
large problem is often difficult in a practical situation, and the
restart variant of the GMRES method [32], which is known as the
GMRES(m) method, is widely used.

In the GMRES(m) method, the parameter m is the restart fre-
quency, and the following two steps are repeated:
• Step 1: Solve Ax = b by the m-iteration GMRES with the

initial guess x0 and obtain the approximate solution xm.
• Step 2: Update the initial guess: x0 = xm.

The outline of the GMRES(m) method is shown in Algorithm 1.
Since the m-step Arnoldi process is an iterative computation,
Algorithm 1 has a nested loop structure; hereafter, we use the
term inner iteration when referring to the iteration of the m-step
Arnoldi process in the GMRES(m) method. It is known that the
convergence rate of the GMRES(m) tends to be better, i.e., the
number of total inner iterations tends to decrease, as a larger m

is chosen. However, a larger m does not always lead to the re-
duction in computational time because m also affects the time per
iteration of the m-step Arnoldi process.

3.2 The Mixed Precision GMRES(m) Method
The mixed precision variant of the GMRES(m) method stud-

ied in this paper has the mathematical background related to
the iterative refinement scheme for the solution of a linear sys-
tem [14], [17]. The iterative refinement scheme consists of the
following three steps: let x̃ be the current approximate solution
for Ax = b, then
• Step 1: Compute the residual r = b − Ax̃.
• Step 2: Approximately solve the error equation Ae = r and

obtain an approximate solution ẽ.
• Step 3: Update the solution x̃ = x̃ + ẽ.

A mixed precision variant of the above iterative refinement
scheme is well-known, in which x̃ is stored in high precision,
r is computed by high precision, but Ae = r is solved by low

precision.
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Algorithm 2 Mixed Precision GMRES(m)
Input: x0: initial guess, ε: convergence criterion, A; coefficient matrix, b:

right-hand side vector, m: restart frequency, maximum number of total

inner iterations

1: A(L) = Low(A)

2: repeat

3: r0 = b − Ax0

4: β = ‖r0‖2
5: if β/‖b‖2 ≤ ε then return x0

6: v1 = r0/β

7: β(L) = Low(β)

8: v(L)
0 = Low(v0)

9: Compute V (L)
m+1 and H̃(L)

m by the m-step Arnoldi process with A(L) and

v(L)
0 . � using low precision arithmetic

10: Compute y(L)
m from β(L) and H̃(L)

m . � using low precision arithmetic

11: z(L)
m = V (L)

m y
(L)
m � using low precision arithmetic

12: zm = Std(z(L)
m )

13: xm = x0 + zm

14: x0 = xm

15: until attain the maximum number of total inner iterations

Output: x0

It was pointed out by Imakura et al. [21] that the following
computation in the GMRES(m) method:
• Step 1: Solve Ax = b by the m-iteration GMRES with the

initial guess x0 and obtain the approximate solution xm.
• Step 2: Update the initial guess: x0 = xm.

is mathematically equivalent to the following computation:
• Step 1: Solve Ae = r by the m-iteration GMRES with the

initial guess e0 = 0 and obtain the approximate solution em,
where r = b − Ax0.

• Step 2: Update the initial guess: x0 = x0 + em.
This relation means that the GMRES(m) method can be inter-
preted as the iterative refinement that uses the m-iteration GM-
RES method for solving error equations. Then, a mixed preci-
sion variant of the iterative refinement with the m-iteration GM-
RES method is easily obtained in the above manner, which also
can be interpreted as a reasonable mixed precision variant of the
GMRES(m) method *2.

The outline of the derived algorithm of the mixed precision
GMRES(m) method is shown in Algorithm 2. In this algorithm,
variables with the suffix “(L)” are stored in low precision, and
Low(·) and Std(·) mean the operation of converting a variable
from standard precision to low precision and from low precision

to standard precision, respectively. It is worth noting that the
algorithm presented here is essentially not new, and similar algo-
rithms can be found in the related studies [3], [4], [25], [26], [34].

4. Theoretical Analysis of the Mixed Precision
GMRES(m) Method Using FP64 and FP32

In this section, the mixed precision GMRES(m) method us-
ing FP64 and FP32 is theoretically analyzed, mainly compared
with the traditional GMRES(m) method using only FP64. Here-

*2 A mixed precision variant of the iterative refinement that uses the
Lanczos/Bi-Lanczos type method (e.g., CG or Bi-CG) can be naturally
obtained. However, unlike the case of GMRES(m), it is difficult to re-
gard the resulting method as a reasonable mixed precision variant of the
original method; there is no mathematical relation to the iterative refine-
ment.

after, the former is denoted as “MP-GMRES(m)”, and the latter
as “FP64-GMRES(m)”.

4.1 Details of the Algorithm of MP-GMRES(m)
The outline of the mixed precision GMRES(m) method is al-

ready shown in Algorithm 2, however its details are not clear,
and we here present them. Algorithm 3 presents the details of
MP-GMRES(m) investigated in this research, in which a variable
with the suffix “(FP32)” is stored in FP32, and a line with the
comment ”by FP32” is computed by the FP32 arithmetic. ktotal

counts the total number of inner iterations. It is worth noting that
Algorithm 3 is equivalent to the algorithm presented in the previ-
ous studies [25], [26].

4.2 Observations on the Mathematical Behavior
The following observations are obtained on the mathematical

behavior of MP-GMRES(m) shown in Algorithm 3.
• The approximate solution x0 is stored in FP64, and its accu-

racy is verified using A and b, which are also stored in FP64
(Lines 7–9). This is equivalent to FP64-GMRES(m), and the
returned solution is as accurate as that by FP64-GMRES(m)
in terms of the residual norm if the convergence criterion is
satisfied.

• In the computation of the m-step GMRES process (Lines 11–
33), all variables are stored in FP32, and all computations are
performed in FP32. Thus, the refinement ratio of the approx-
imate solution by each m-step GMRES process is expected
to be less than that in FP64-GMRES(m), and it means that
the number of the outer iterations (i.e., the loop from Line 6
to Line 37) will likely increase. However, if the approxi-
mate solution is refined even a little in every m-step GMRES
process, which means

‖b − Ax0‖2 > ‖b − Axk‖2 (7)

at Line 35, MP-GMRES(m) can attain the convergence.
• The use of FP32 in the computation of the m-step GMRES

process of MP-GMRES(m) impacts the following two math-
ematical aspects (here, rounding error is ignored):

– The Krylov subspace Kk(A(FP32), v(FP32)
1 ) is generated in

MP-GMRES(m) (Lines 16–22), which is different from that
in FP64-GMRERS(m) (i.e., Kk(A, v1)). However, it is not
clear how this difference impacts the convergence behavior
of the method.

– In the context of the iterative refinement, each m-step GM-
RES process of MP-GMRES(m) solves

A(FP32)e = r(FP32)
0 (= β(FP32)v(FP32)

1 ), (8)

which is a perturbed linear system from

Ae = r0(= βv1). (9)

Thus, finding a better solution for (8), which generally cor-
responds to employing a larger m, may negatively impact
on solving the original linear system (1). This indicates
that investigating into the relationship between m and the
convergence behavior of MP-GMRES(m) is an important
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Algorithm 3 MP-GMRES(m) investigated in this research
Input: x0: initial guess, ε: convergence criterion, A; coefficient matrix, b:

right-hand side vector, m: restart frequency, kmax: maximum number of

total inner iterations

1: A(FP32) = ToFP32(A)

2: ζ = ‖b‖2
3: ζ(FP32) = ToFP32(ζ)

4: ε(FP32) = ToFP32(ε)

5: ktotal = 0

6: repeat

7: r0 = b − Ax0

8: β = ‖r0‖2
9: if β/ζ ≤ ε then return x0

10: v1 = r0/β

11: β(FP32) = ToFP32(β)

12: v(FP32)
1 = ToFP32(v1)

13: u(FP32) = [u(FP32)
1 , . . . , u(FP32)

k+1 ]� = [β(FP32), 0, . . . , 0]�

14: for k = 1, 2, . . . ,m do

15: ktotal = ktotal + 1

16: w(FP32) = A(FP32)v(FP32)
k � by FP32

17: for j = 1, 2, . . . , k do

18: h(FP32)
j,k = v(FP32)

j

�
w(FP32) � by FP32

19: w(FP32) = w(FP32) − h(FP32)
j,k v(FP32)

j � by FP32

20: end for

21: h(FP32)
k+1,k = ‖w(FP32)‖2 � by FP32

22: v(FP32)
k+1 = w(FP32)/h(FP32)

k+1,k � by FP32

23: for j = 1, 2, . . . , k − 1 do

24:

⎛⎜⎜⎜⎜⎜⎝h
(FP32)
j,k

h(FP32)
j+1,k

⎞⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎝ c(FP32)

j s(FP32)
j

−s(FP32)
j c(FP32)

j

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝h

(FP32)
j,k

h(FP32)
j+1,k

⎞⎟⎟⎟⎟⎟⎠ � by FP32

25: end for

26: c(FP32)
k = h(FP32)

k,k /

√
h(FP32)

k,k

2
+ h(FP32)

k+1,k

2
� by FP32

27: s(FP32)
k = h(FP32)

k+1,k /

√
h(FP32)

k,k

2
+ h(FP32)

k+1,k

2
� by FP32

28:

(
u(FP32)

k
u(FP32)

k+1

)
=

(
c(FP32)

k s(FP32)
k

−s(FP32)
k c(FP32)

k

) (
u(FP32)

k
u(FP32)

k+1

)
� by FP32

29:

⎛⎜⎜⎜⎜⎝h
(FP32)
k,k

h(FP32)
k+1,k

⎞⎟⎟⎟⎟⎠ =
(

c(FP32)
k s(FP32)

k
−s(FP32)

k c(FP32)
k

) ⎛⎜⎜⎜⎜⎝h
(FP32)
k,k

h(FP32)
k+1,k

⎞⎟⎟⎟⎟⎠ � by FP32

30: if |u(FP32)
k+1 |/ζ(FP32) ≤ ε(FP32) then goto 32 � by FP32

31: end for

32: y(FP32)
k =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
h(FP32)

1,1 · · · h(FP32)
1,k

. . .
.
.
.

h(FP32)
k,k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1 ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
u(FP32)

1
.
.
.

u(FP32)
k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � by FP32

33: z(FP32)
k =

[
v(FP32)

1 · · · v(FP32)
k

]
y(FP32)

k � by FP32

34: zk = ToFP64(z(FP32)
k )

35: xk = x0 + zk

36: x0 = xk

37: until ktotal > kmax

Output: x0

task in this study.
• In Algorithm 3, the relative residual 2-norm is checked in

each inner iteration (Line 30), and the m-step GMRES pro-
cess breaks if the criterion is satisfied. However this check is
implicitly performed for the perturbed system (8) with FP32
variables by FP32 arithmetic. Therefore, a solution xk that
passes the check at Line 30 may fail to pass the check at
Line 9, which means that more m-step GMRES processes
are required to satisfy the convergence criterion. Since the
computation of the check at Line 9 needs SpMV with FP64
variables by FP64 arithmetic, this wrong judgement may in-
crease the execution time, and there is a room to improve

Table 1 Comparison of memory footprint (in bytes) between
FP64-GMRES(m) and MP-GMRES(m).

FP64 MP
A val (FP64) 8Nnz 8Nnz

col ind (INT32) 4Nnz 4Nnz

row ptr (INT32) 4n 4n
val (FP32) – 4Nnz

V (FP64) 8(m + 1)n –
(FP32) – 4(m + 1)n

Total 12Nnz 16Nnz

+(8m + 12)n +(4m + 8)n

how to break the m-step GMRES process.

4.3 Remarks on the Implementation on a Standard CPU
Platform

In a computational environment based on standard CPU(s),
both FP64 and FP32 are available (e.g., double and float in C lan-
guage), and converting a variable between these two data types
is also easy (e.g., type casting in C). Thus, a main concern when
implementing MP-GMRES(m) is the required memory footprint.
In the case of CPU-GPU hybrid computing [3], [4], in which only
the m-step GMRES process is performed on GPU, this point was
not discussed because GPU provides its own memory space; the
total memory space increases. However, in the case of using
only CPU, the matrix data A(FP32) in MP-GMRES(m) squeezes
the memory consumption.

In MP-GMRES(m), the additional memory space is needed
for A(FP32). On the other hand, changing from Vm+1 to V (FP32)

m+1

can reduce the memory consumption; Vm+1 is not needed in
MP-GMRES(m). In Table 1, the comparison on the memory
footprint between FP64-GMRES(m) and MP-GMRES(m) is pre-
sented, where Nnz represents the number of nonzero elements in
the matrix A. Here, the CRS (Compressed Row Storage) format,
which generally consists of the three one-dimensional arrays val,
col ind, and row ptr, is assumed for storing the matrix data; in
this case, only the val in FP32 is additionally needed in MP-
GMRES(m).

From Table 1, the change of the memory footprint from FP64-
GMRES(m) is

4Nnz − 4mn − 4n = 4n
(Nnz

n
− (m + 1)

)
. (10)

This result means that the memory footprint does not increase
if the average of the number of nonzero elements per row (i.e.,
Nnz/n) in A is smaller than the restart frequency m, which is often
satisfied in practical situations.

4.4 Discussion on the Expected Speedup
Finally, the expected speedup of MP-GMRES(m) over FP64-

GMRES(m) is discussed. First, the execution time of the m-step
Arnoldi process in FP32 and FP64 is roughly compared; for sim-
plicity, the effect of cache memory is not considered at all in the
following analysis. This process mainly consists of m SpMVs and
MGS for m vectors, and it can be assumed that both are memory
bounded computations.

In Table 2, the rough estimation of the memory access cost
in the m-step Arnoldi process in FP64 and FP32 is summarized;
for SpMV, memory access cost for two vectors are considered to-
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Table 2 Rough estimation of the memory access cost (in bytes) in the
m-step Arnoldi process in FP64 and FP32.

FP64 FP32
SpMVs (12Nnz + 20n)m (8Nnz + 12n)m

MGS 8 · 1
2 m2n 4 · 1

2 m2n

Total 4m2n + 12mNnz 2m2n + 8mNnz

+20mn +12mn

gether with that for the matrix stored in the CRS format. Let γ
be the ratio of the number of repeating the m-step GMRES pro-
cess in MP-GMRES(m) over that in FP64-GMRES(m); γ ≥ 1 is
generally expected. Then, ignoring the computational cost other
than the repeated m-step Arnoldi processes, the speedup of MP-
GMRES(m) over FP64-GMRES(m) is estimated as

(Speedup) =
4m2n + 12mNnz + 20mn
γ(2m2n + 8mNnz + 12mn)

=
2m + 6 Nnz

n + 10

γ
(
m + 4 Nnz

n + 6
)

	 2ρ + 6
γ(ρ + 4)

, (11)

where ρ = m/(Nnz/n). From

1.5 <
2ρ + 6
ρ + 4

< 2, (12)

the following observations are obtained:
• If γ < 1.5, the acceleration by MP-GMRES(m) is expected.
• If γ = 1.0, which means no degradation in the convergence

behavior, the maximum speedup is up to 2.0, which is rea-
sonable considering the ratio of bytes of FP64 and FP32.

• As ρ becomes larger, the expected speedup increases.

5. Numerical Experiments

Numerical experiments are conducted to clarify the mathemat-
ical behavior of MP-GMRES(m). For test matrices obtained from
the SuiteSparse Matrix Collection [13], the number of total inner
iterations for achieving a designated accuracy and the achievable
accuracy within a designated limit of total inner iterations are in-
vestigated. The speedup ratio over FP64-GMRES(m) is also eval-
uated.

5.1 Experimental Settings
FP64-GMRES(m) and MP-GMRES(m) are implemented; all

program codes are written in C. In the experiments on the number
of total inner iterations and the achievable accuracy, sequential
implementations are employed. For the evaluation of the speedup
ratio, parallel implementations with OpenMP are used, in which
the SpMV and MGS kernels in the Arnoldi process are paral-
lelized. The CRS format is employed for storing the matrix data.

All experiments are carried out on a single computational
node of the supercomputer system Grand Chariot operated in
Hokkaido University. The information of this platform is listed
in Table 3. The program codes are compiled by the Intel C com-
pailer “icc” (ver. 19.1.3.304), and the options “-xCORE-AVX512
-qopenmp” are used for parallel implementations.

From the SuiteSparse Matrix Collection, matrices whose 2-
norm condition number κ2(A)(= ‖A‖2/‖A−1‖2) is computed and

Table 3 Information of the computational platform used in the numerical
experiments.

Item Description
CPU No. Xeon Gold 6148

# of cores 20
Frequency 2.4 GHz

Node # of CPUs 2
Memory size 384 GB

in the range from O(101) to O(108) are selected; the information
of the selected test matrices are listed in Table 4. The other set-
tings in the experiments are as follows:
• Right-hand side vector: b = [1, 1, . . . , 1]�

• Initial guess: x0 = [0, 0, . . . , 0]�

• Convergence criterion:
‖b − Ax‖2
‖b‖2 ≤ 10−10

• Iteration limit: (total # of inner iterations) ≤ n

• Candidates of m: 50, 100, 200, 300, 400, 500
It is worth noting that all residuals shown in the subsequent ta-
bles and figures are computed with A and b in FP64 by FP64
arithmetic; there is no effect by FP32 in the evaluation of MP-
GMRES(m), which is fair to that of FP64-GMRES(m).

5.2 Comparison of the Total Number of Inner Iterations
Table 5 shows the total number of inner iterations of FP64-

GMRES(m) and MP-GMRES(m) for each matrix and each m.
From this table, the following observations are obtained.
• Excepting a few cases (e.g., TSOPF RS b39 c7), if

FP64-GMRES(m) attained the convergence criterion,
MP-GMRES(m) also did. This indicates that if a problem
can be solved by FP64-GMRES(m), it is expected that it
will be solved also by MP-GMRES(m) although there is a
possibility that more inner iterations will be required.

• There are some cases that FP64-GMRES(m) attained within
one restart (i.e., less than m inner iterations), e.g., cags10,
Zhao1. However, there are no such cases in MP-
GMRES(m), and this is reasonable because the inner iter-
ations in MP-GMRES(m) are performed in FP32.

• Excepting the above cases, if m is small (e.g., m = 50, 100),
the total number of inner iterations of MP-GMRES(m) is al-
most equal to that of FP64-GMRES(m).

• It can be found that the difference of the total number
of inner iterations between FP64-GMRES(m) and MP-
GMRES(m) tends to increase as m becomes larger; as
m grows, the total number of inner iterations of FP64-
GMRES(m) basically decreases, but that of MP-GMRES(m)
tends to increase.

For memplus, Fig. 1 illustrates the change of the total num-
ber of inner iterations with m. As Fig. 1 shows, the total
number of inner iterations first decreases and then increases
in MP-GMRES(m), while it monotonically decreases in FP64-
GMRES(m). This behavior is consistent with that mentioned in
Section 4.2. It is also an interesting result that MP-GMRES(m)
attained the convergence criterion with smaller total inner itera-
tions than FP64-GMRES(m); however, clarifying its reason will
be not easy.
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Table 4 Information of the test matrices selected from the SuiteSparse Matrix Collection.

κ2(A) Name n Nnz Nnz/n Kind
O(101) cage10 11,397 150,645 13 Directed weighted graph

O(102)

appu 14,000 1,853,104 132 Directed weighted random graph
Zhao1 33,861 166,453 5 Electromagnetics problem
FEM 3D thermal1 17,880 430,740 24 Thermal problem
ns3Da 20,414 1,679,599 82 Computational fluid dynamics problem

O(103)
poisson3Da 13,514 352,762 26 Computational fluid dynamics problem
wang3 26,064 177,168 7 Semiconductor device problem
epb1 14,734 95,053 6 Thermal problem

O(104)
coupled 11,341 98,523 9 Circuit simulation problem
af23560 23,560 484,256 21 Computational fluid dynamics problem
Zhao2 33,861 166,453 5 Electromagnetics problem

O(105)
memplus 17,758 126,150 7 Circuit simulation problem
wang4 26,068 177,196 7 Semiconductor device problem
viscoplastic2 32,769 381,326 12 Materials problem

O(106)

airfoil 2d 14,214 259,688 18 Computational fluid dynamics problem
inlet 11,730 328,323 28 Model reduction problem
jan99jac040sc 13,694 82,842 6 Economic problem
chipcool1 20,082 281,150 14 Model reduction problem

O(107)

TSOPF RS b39 c7 14,098 252,446 18 Power network problem
sme3Da 12,504 874,887 70 Structural problem
garon2 13,535 390,607 29 Computational fluid dynamics problem
shermanACb 18,510 145,149 8 2D/3D problem

O(108)

powersim 15,838 67,562 4 Power network problem
circuit 3 12,127 48,137 4 Circuit simulation problem
e40r0100 17,281 553,562 32 2D/3D problem
rajat15 37,261 443,573 12 Circuit simulation problem

Table 5 Total number of inner iterations in FP64-GMRES(m) and MP-GMRES(m) for attaining the con-
vergence criterion (‖b − Ax‖2/‖b‖2 ≤ 10−10): “—” represents that the method did not attain the
convergence criterion by the iteration limit.

κ2(A) Matrix Name
m = 50 m = 100 m = 200 m = 300 m = 400 m = 500

FP64 MP FP64 MP FP64 MP FP64 MP FP64 MP FP64 MP
O(101) cage10 26 59 26 110 26 211 26 311 26 411 26 511

O(102)

appu 114 114 110 151 108 251 108 351 108 451 108 551
Zhao1 43 73 43 123 43 223 43 323 43 423 43 523
FEM 3D thermal1 318 318 270 270 260 300 250 399 250 511 250 611
ns3Da 2,310 2,316 1,983 1,984 1,993 1,989 1,791 1,790 1,945 1,945 1,522 1,522

O(103)
poisson3Da 306 320 260 270 184 446 184 651 184 833 184 1,018
wang3 937 896 670 663 486 587 319 719 313 957 313 1,150
epb1 1,994 1,881 1,781 1,786 1,516 1,517 1,290 1,302 1,153 1,153 1,095 1,272

O(104)
coupled — — — 9,873 1,846 2,094 1,450 1,441 1,025 1,091 872 1,324
af23560 — — — — — — 4,799 4,777 4,305 4,283 4,442 4,351
Zhao2 — — 3,878 3,611 3,488 3,494 2,868 2,846 2,880 2,880 2,929 2,932

O(105)
memplus 5,900 4,521 3,030 2,943 1,942 2,044 1,532 2,404 1,459 3,265 1,352 3,108
wang4 — — — — 1,741 1,896 1,101 1,423 738 1,477 688 1,792
viscoplastic2 — — 2,061 1,969 1,530 1,658 1,409 1,700 1,375 2,046 1,299 2,274

O(106)

airfoil 2d — — — — — — — — — — 8,172 —
inlet — — — — — — — — — — — —
jan99jac040sc — — — — — — — — — — — —
chipcool1 — — — — — — — — 13,626 — 9,636 —

O(107)

TSOPF RS b39 c7 — — — — 392 — 488 — 588 — 688 —
sme3Da — — — — — — — — — — — —
garon2 — — — — — — — — — — — —
shermanACb — — — — — — — — — — — —

O(108)

powersim — — — — — — — — — — — —
circuit 3 — — — — — — — — — — — —
e40r0100 — — — — — — — — — — — —
rajat15 — — — — — — — — — — — —

5.3 Comparison of the Achievable Accuracy
Table 6 provides the relative residual norm in FP64-

GMRES(m) and MP-GMRES(m) at the iteration limit (or when
the relative residual norm attained the convergence criterion).
From this table, it is observed that when both the methods did
not attain the convergence criterion, there is almost no difference
in the final accuracy excepting the matrix airfoil 2d; almost no
improvement from the initial guess was obtained in many cases
(“-1” in the table means this). This fact indicates that regardless

of using FP32, another technique, e.g., preconditioning, should
be considered for solving these linear systems.

5.4 Case Studies with the Relative Residual Norm History
Among the results presented in the previous subsections, some

interesting cases are analyzed in detail with the history of the rel-
ative residual norm; in the graphs of the history, a mark means a
restart point, in which the residual norm is calculated explicitly
by FP64 arithmetic.
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Table 6 Achievable accuracy of FP64-GMRES(m) and MP-GMRES(m) within the limit of total inner it-
erations: 
log10 (‖b − Ax‖2/‖b‖2)� when the solver attained the iteration limit or the convergence
criterion (“-11” corresponds to this case) is listed.

κ2(A) Matrix Name
m = 50 m = 100 m = 200 m = 300 m = 400 m = 500

FP64 MP FP64 MP FP64 MP FP64 MP FP64 MP FP64 MP
O(101) cage10 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11

O(102)

appu -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11
Zhao1 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11
FEM 3D thermal1 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11
ns3Da -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11

O(103)
poisson3Da -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11
wang3 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11
epb1 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11

O(104)
coupled -2 -2 -9 -11 -11 -11 -11 -11 -11 -11 -11 -11
af23560 -1 -1 -1 -1 -1 -1 -11 -11 -11 -11 -11 -11
Zhao2 -1 -1 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11

O(105)
memplus -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11
wang4 -1 -1 -1 -1 -11 -11 -11 -11 -11 -11 -11 -11
viscoplastic2 -1 -1 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11

O(106)

airfoil 2d -8 -3 -8 -3 -9 -4 -9 -3 -9 -5 -11 -9
inlet -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
jan99jac040sc -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
chipcool1 -1 -1 -1 -2 -4 -9 -10 -3 -11 -6 -11 -4

O(107)

TSOPF RS b39 c7 -1 -1 -1 -1 -11 -1 -11 -1 -11 -1 -11 -1
sme3Da -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2 -1
garon2 -1 -1 -1 -1 -2 -2 -3 -3 -3 -3 -3 -3
shermanACb -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

O(108)

powersim -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
circuit 3 -1 -1 -1 -1 -1 -1 -2 -2 -2 -2 -2 -2
e40r0100 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
rajat15 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0

Fig. 1 The change of the total number of inner iterations in
FP64-GMRES(m) and MP-GMRES(m) for memplus.

• Zhao1 (Fig. 2): from Fig. 2 (b), it is found that no mat-
ter how large m is, the reduction of the residual 2-norm at
the first restart point is limited (up to around 10−5) in MP-
GMRES(m), while FP64-GMRES(m) attained the conver-
gence criterion within one restart as shown in Fig. 2 (a).

• ns3Da (Fig. 3): both FP64-GMRES(m) and MP-GMRES(m)
provide behavior of the residual 2-norm history. The total
number of inner iterations tends to be small as m grows in
both methods.

• memplus (Fig. 4): as m increases, the total number of in-
ner iterations decreases in FP64-GMRES(m) as shown in
Fig. 4 (a). However, the total number of inner iterations first
decreases and then increases (minimum is provided when
m = 200) in MP-GMRES(m), which Fig. 4 (b) clearly illus-
trates. Another interesting fact is that when m = 50, the to-
tal number of inner iterations in MP-GMRES(m) is smaller
than that in FP64-GMRES(m), whose reason is currently not

Fig. 2 Relative residual 2-norm history for Zhao1.

known.
• airfoil 2d (Fig. 5): FP64-GMRES(m) attained the con-

vergence criterion only when m = 500. Although MP-
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Fig. 3 Relative residual 2-norm history for ns3Da.

GMRES(m) with m = 500 did not attain within the itera-
tion limit, seen from Fig. 5 (b), it is expected to attain with
more iterations. In both methods, the residual norm stag-
nates when m ≤ 400, however, the achievable accuracy is
different.

• TSOPF RS b39 c7 (Fig. 6): FP64-GMRES(m) attained the
convergence criterion when m ≥ 200, while almost no de-
crease of the residual norm is found in MP-GMRES(m) with
any m. The behavior of the residual norm is totally different
between FP64-GMRES(m) and MP-GMRES(m).

5.5 Evaluation of the Execution Time
Table 7 presents the execution time of FP64-GMRES(m) and

MP-GMRES(m) in multi-threaded execution using 40 threads;
we used the default setting on the thread affinity: scatter. Since
the main interest in this paper is the numerical behavior of the
methods, the results in this table should be regarded as reference
data; there is a room to further tune our implementation (e.g.,
using other storage format than CRS and optimizing thread par-
allelization) for improving the performance. It is also worth men-
tioning that the characteristics of the execution time of SpMV
depend on the size of a matrix due to the effect of the cache mem-
ory; only small matrices are tested in our experiments.

From Table 7, it is confirmed that the execution time tends to
be short when m is small in both FP64-GMRES(m) and MP-
GMRES(m), which is a well-known fact among the users of

Fig. 4 Relative residual 2-norm history for memplus.

the GMRES(m) method. Since the total number of inner iter-
ations is almost equivalent between FP64-GMRES(m) and MP-
GMRES(m) when m is small, which is shown in Table 5, MP-
GMRES(m) outperforms FP64-GMRES(m) in terms of the exe-
cution time for many test matrices. Even in the case that larger m

reduces the total number of inner iterations in FP64-GMRES(m),
e.g., wang4, MP-GMRES(m) is still faster, in which about 2.5
times the total inner iterations are required: comparison between
MP-GMRES(200) and FP64-GMRES(400).

Among the results in Table 8, for the cases in which the set-
ting of m that provides the shortest execution time is not differ-
ent between FP64-GMRES(m) and MP-GMRES(m), the actual
speedup ratio of MP-GMRES(m) over FP64-GMRES(m) is com-
pared with the estimated speedup ratio obtained by Eq. (11); γ
in Eq. (11) is calculated by the actual number of the iterations.
The results of the comparison are given in Table 8. Excepting
a few matrices, i.e., appu, ns3Da, poisson3Da, the estimated
ratios seem to be reasonable because the estimation is based on
the rough modeling. In the above exceptions, ρ is small com-
pared with other cases, which means that the cost of SpMVs is
relatively large to that of MGS. Since the modeling of the execu-
tion time of SpMV is more complicated than that for MGS, this
may be one of reasons for the large gap between the actual and
estimated speedup ratio.

5.6 Summary of the Numerical Experiments
From the presented numerical results, it is confirmed that if
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Fig. 5 Relative residual 2-norm history for airfoil 2d.

a problem is solved by FP64-GMRES(m), MP-GMRES(m) also
can solve it excepting a few matrices. This fact is important for
the purpose of using MP-GMRES(m) in practical applications as
an alternative of FP64-GMRES(m). For problems that have been
solved by FP64-GMRES(m), it is worth considering the use of
MP-GMRES(m).

In the case of employing small m, the total number of inner
iterations for attaining the convergence criterion is almost equiv-
alent between FP64-GMRES(m) and MP-GMRES(m). However,
when m is larger, the total number of inner iterations basically
decreases in FP64-GMRES(m) but increases in MP-GMRES(m),
and there is a significant difference between them. Although we
have some perspectives for the phenomena based on the history
of the residual 2-norm, further investigations are needed for clar-
ifying its detailed mechanism. Excepting the case that a problem
is solved only when using large m, basically small m provides
the fastest execution time. As mentioned above, in such a case,
both methods need almost equivalent total inner iterations, and
the time per inner iteration is smaller in MP-GMRES(m) than
in FP64-GMRES(m) on a standard CPU platform. Thus, it is
expected that MP-GMRES(m) outperforms FP64-GMRES(m) in
terms of the execution time.

As mentioned in Section 2, there are several papers that study
the MP-GMRES(m) method [3], [4], [25], [26], [34]. Among
them, for the papers [3], [4], [25], [34] *3, we briefly compare our

*3 Since the paper [26] deals with only the preconditioned method, we do
not refer to it.

Fig. 6 Relative residual 2-norm history for TSOPF RS b39 c7.

results with those presented in these papers. First, our results are
consistent with the previous studies in the following points:
• If a problem is solved by FP64-GMRES(m), basically it can

be solved also by MP-GMRES(m).
• When m is small, the total number of inner iterations

of MP-GMRES(m) is almost equivalent to that in FP64-
GMRES(m); cf., the results with m = 10 reported in the
papers [3], [34].

• For some problems, MP-GMRES(m) can outperform FP64-
GMRES(m) in terms of the execution time; cf., the results
presented in the papers [3], [4], [25], [34].

• If a problem is solved within single restart by FP64-
GMRES(m), MP-GMRES(m) requires more inner iterations
(e.g., cage10 in our experiments); cf., the results provided
in the paper [25].

Next, we clarify insights that have been newly obtained
through our investigation:
• The results on the achieved accuracy are reported including

those in the case that the criterion is not satisfied. These re-
sults indicate that the attainable accuracy will be basically
equivalent between MP-GMRES(m) and FP64-GMRES(m).

• The comprehensive results for different settings of m are
presented. From them, the differences in the tendency of
the total number of inner iterations between MP-GMRES(m)
and FP64-GMRES(m) are observed; the tendency differs be-
tween small m and large m.

c© 2022 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.30

Table 7 Execution time of FP64-GMRES(m) and MP-GMRES(m) in multi-threaded execution using 40
threads: the result with underline is the fastest among different settings of m, and “—” means
that the method did not attain the convergence criterion.

κ2(A) Matrix Name Method m = 50 m = 100 m = 200 m = 300 m = 400 m = 500

O(101) cage10
FP64 1.03 × 10−2 1.22 × 10−2 1.10 × 10−2 1.25 × 10−2 9.49 × 10−3 1.14 × 10−2

MP 1.43 × 10−2 3.40 × 10−2 9.85 × 10−2 2.01 × 10−1 4.09 × 10−1 5.43 × 10−1

O(102)

appu
FP64 4.34 × 10−2 6.31 × 10−2 6.70 × 10−2 7.36 × 10−2 6.80 × 10−2 7.58 × 10−2

MP 4.58 × 10−2 8.33 × 10−2 1.72 × 10−1 2.96 × 10−1 4.78 × 10−1 7.27 × 10−1

Zhao1
FP64 3.38 × 10−2 3.77 × 10−2 3.72 × 10−2 3.79 × 10−2 3.27 × 10−2 3.49 × 10−2

MP 2.90 × 10−2 7.75 × 10−2 3.03 × 10−1 7.62 × 10−1 1.39 × 100 2.18 × 100

FEM 3D thermal1
FP64 1.08 × 10−1 1.69 × 10−1 3.05 × 10−1 4.64 × 10−1 4.53 × 10−1 4.78 × 10−1

MP 6.36 × 10−2 9.29 × 10−2 1.71 × 10−1 3.24 × 10−1 6.00 × 10−1 9.12 × 10−1

ns3Da
FP64 1.21 × 100 1.74 × 100 3.45 × 100 5.33 × 100 7.70 × 100 7.89 × 100

MP 9.59 × 10−1 1.15 × 100 1.77 × 100 2.34 × 100 3.49 × 100 3.62 × 100

O(103)

poisson3Da
FP64 8.94 × 10−2 1.29 × 10−1 1.71 × 10−1 1.65 × 10−1 1.69 × 10−1 1.80 × 10−1

MP 8.32 × 10−2 9.35 × 10−2 2.34 × 10−1 4.44 × 10−1 8.43 × 10−1 1.34 × 100

wang3
FP64 4.39 × 10−1 6.45 × 10−1 9.65 × 10−1 1.15 × 100 1.26 × 100 1.35 × 100

MP 2.35 × 10−1 3.20 × 10−1 4.81 × 10−1 9.35 × 10−1 1.81 × 100 2.79 × 100

epb1
FP64 6.09 × 10−1 9.65 × 10−1 1.59 × 100 2.19 × 100 2.81 × 100 3.50 × 100

MP 3.24 × 10−1 5.19 × 10−1 8.09 × 10−1 9.96 × 10−1 1.24 × 100 1.50 × 100

O(104)

coupled
FP64 — — 1.45 × 100 1.77 × 100 1.66 × 100 1.90 × 100

MP — — 8.65 × 10−1 9.10 × 10−1 8.87 × 10−1 1.26 × 100

af23560
FP64 — — — 1.47 × 101 1.78 × 101 2.46 × 101

MP — — — 5.89 × 100 7.35 × 100 9.91 × 100

Zhao2
FP64 — 5.12 × 100 1.08 × 101 1.45 × 101 1.93 × 101 2.48 × 101

MP — 2.44 × 100 4.36 × 100 6.51 × 100 9.06 × 100 1.20 × 101

O(105)

memplus
FP64 2.32 × 100 2.12 × 100 2.69 × 100 3.49 × 100 4.36 × 100 5.16 × 100

MP 1.30 × 100 1.23 × 100 1.30 × 100 2.18 × 100 3.37 × 100 4.14 × 100

wang4
FP64 — — 3.53 × 100 3.62 × 100 3.34 × 100 3.65 × 100

MP — — 1.69 × 100 2.00 × 100 2.85 × 100 4.55 × 100

viscoplastic2
FP64 — 3.12 × 100 4.69 × 100 6.67 × 100 8.89 × 100 1.01 × 101

MP — 1.59 × 100 2.22 × 100 3.17 × 100 4.68 × 100 6.60 × 100

Table 8 Comparison of the speedup ratio of MP-GMRES(m) over FP64-GMRES(m) between the actual
and estimated results: for the cases in Table 7 in which the setting of m that provides the short-
est execution time is not different between FP64-GMRES(m) and MP-GMRES(m), the actual
speedup ratio is compared with the estimation obtained by Eq. (11), in which γ is calculated by
the actual number of the iterations.

κ2(A) Matrix Name m Nnz/n ρ γ Actual Speedup Estimated Speedup

O(102)
appu 50 132 0.38 1.00 0.95 1.54
FEM 3D thermal1 50 24 2.08 1.00 1.70 1.67
ns3Da 50 82 0.61 1.00 1.26 1.56

O(103)
poisson3Da 50 26 1.92 1.07 1.08 1.56
wang3 50 7 7.14 0.96 1.87 1.90
epb1 50 6 8.33 0.94 1.88 1.94

O(104)
coupled 200 9 22.22 1.06 1.68 1.82
af23560 300 21 14.29 1.00 2.50 1.90
Zhao2 100 5 20.00 0.97 2.10 1.97

O(105)
memplus 100 7 14.29 1.02 1.73 1.86
viscoplastic2 100 12 8.33 0.97 1.96 1.90

• Typical histories of the relative residual 2-norm are shown.
They clearly illustrate the behaviour of MP-GMRES(m)
and FP64-GMRES(m) and help us to better understand the
characteristics of MP-GMRES(m) and further improve the
method.

• The comparison between the obtained and estimated
speedup ration is provided. Although the estimation is based
on the rough model, this comparison supports the obtained
timing results.

6. Conclusion

MP-GMRES(m), the mixed precision variant of the
GMRES(m) method using FP64 and FP32, was investi-
gated through the numerical experiments and compared with
FP64-GMRES(m), the traditional GMRES(m) method using
only FP64. For various test matrices, with different settings of
m, the numerical behaviors, namely the total number of inner
iterations and the achievable accuracy, were examined. Among
the obtained results, typical cases were analyzed in detail with
the residual 2-norm history. The execution time of the methods

c© 2022 Information Processing Society of Japan
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was also evaluated on a standard CPU platform.
The main observations obtained though the numerical experi-

ments in this paper are as follows.
• If a problem is solved by FP64-GMRES(m), also MP-

GMRES(m) can basically solve it; only a few exceptions
were found.

• When m is small, the total number of inner iterations for
attaining the convergence criterion is almost equivalent be-
tween FP64-GMRES(m) and MP-GMRES(m).

• As m grows, the total number of inner iterations often de-
creases in FP64-GMRES(m) but tends to increase in MP-
GMRES(m); detailed reasons for it are currently not clear.

• Some interesting phenomena about history of the residual 2-
norm were observed, and further investigations for them will
be helpful for better understanding of MP-GMRES(m).

• On the standard CPU platform, it can be expected that MP-
GMRES(m) outperforms FP64-GMRES(m) in terms of the
execution time.

The presented results in this paper are consistent with those al-
ready reported in the existing papers [3], [4], [25], [34] and pro-
vide new insights on the numerical behavior of MP-GMRES(m),
which will be helpful both for the use in applications and the fur-
ther improvement of the method.

A main issue remained to be investigated is clarifying the
mechanism and reasons for the different behavior of the total
number of inner iterations when m becomes large. One possibility
is mentioned in Section 4.2: the perturbation for the minimization
problem solved in the m-step GMRES process. Through numeri-
cal experiments, its impact on the total number of inner iterations
should be investigated. In addition, based on the results of such
investigations, designing a way of determining an appropriate set-
ting of m in MP-GMRES(m) will be crucial for the efficient use
in applications, as that presented in the paper [25].

Some techniques for improving the convergence of the
GMRES(m) method have been proposed: adaptively determining
m [6], [35] and modifying the approximate solution at restart [21],
[22]. It will be interesting to apply these techniques to MP-
GMRES(m) and examine their efficiency; it is currently not clear
whether similar performance improvement will be obtained as in
FP64-GMRES(m).

Finally, investigating the case of using a preconditioner is an-
other important task. As shown in the numerical results in this
paper, for a difficult problem, both FP64-GMRES(m) and MP-
GMRES(m) cannot obtain a solution with required accuracy, and
a preconditioner is necessary. A mixed precision variant of the
preconditioned GMRES(m) is already examined [25], [26], how-
ever, its numerical aspects such as presented in this paper have
been still not clear. In addition, there is a large design space of
mixed precision algorithms. Thus, detailed investigations will be
important for developing a efficient mixed precision variant of the
preconditioned GMRES(m) method.
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