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Abstract: Algorithms for designing quantum circuit architectures are important steps toward practical quantum computing 
technology. Applying agent-based artificial intelligence methods for quantum circuit design could improve the efficiency of 
quantum circuits. We propose a quantum observable Markov decision process planning algorithm for quantum circuit design. Our 
algorithm does not require state tomography, and hence has low readout sample complexity. Numerical simulations for entangled 
states preparation and energy minimization are demonstrated. The results show that the proposed method can be used to design 
quantum circuits to prepare the state and to minimize the energy. 
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1. Introduction     

Quantum computers are considered as potential technology to 
surpass the computational power of classical computers [1,2,3,4]. 
Variational quantum algorithms [5] have been actively researched. 
However, the design of a quantum circuit for solving a specific task 
sometimes requires empirical rules and domain knowledge. 
Reinforcement Learning (RL) method in Artificial Intelligence 
(AI) [6,7] has been successful in the areas such as robot control [8] 
and games [9, 10]. Applying RL to the control of quantum systems 
has been studied [11, 12, 13, 14, 15]. Most of these studies consider 
low level control at the hardware (Hamiltonian) level. To perform 
concrete quantum computation, however, it is also important to 
control at the circuit level, which is a higher level of abstraction 
[16]. For simple circuits, it is demonstrated that the closed-loop 
control can lead to better control performance for trapped-ion 
quantum processors [17]. State-of-the-art ion trap qubits have 
coherence time more than 10 minutes [18, 19], which provides 
enough running time for on-line decision process on a classical 
computer.  
In this report, we consider applying RL to quantum feedback 

control at the circuit level [20]. The basic RL algorithms solve for 
Markov Decision Process (MDP), where the current state of the 
agent can be exactly known from the observation of the 
environment. But for a quantum system, the Born rule asserts that 
an observation result is drawn from a probabilistic distribution 
over the state space. Therefore, it is necessary to formulate the 
problem as a partially observable problem. Quantum Observable 
Markov Decision Process (QOMDP) [21, 22, 23, 24] was proposed 
as a quantum extension of the Partially Observable Markov 
Decision Process (POMDP) framework for the classical partially 
observable problems [25, 7], but no specific application of 
QOMDP was proposed. Our QOMDP planning approach is 
Bayesian, and does not rely on state tomography [26, 27, 28] or 

 
 1 Engineering Department, The University of Electro-Communications, 182-8585 
Tokyo, Japan 
 2 Grid Inc., 107-0061 Tokyo, Japan 

expectation evaluation [29, 30]. Hence it improves the quantum 
machine sample complexity per time step from	𝑂(𝜖%&𝑁()*) (or 
𝑂(𝜖%,(log𝑁()*), log(21))  with shadow tomography [31]) to 
𝑂(1) for number of observables 𝑁()* and accuracy 𝜖. However, 
our approach still requires exponentially expensive classical 
planning. We formulate quantum control at the circuit level as a 
QOMDP reinforcement learning problem to solve for the quantum 
circuit design problem [20]. The exact QOMDP Bellman equation 
for value iteration is derived, and a concrete planning algorithm is 
proposed. In the exact POMDP planning for quantum state, there 
are three computational intractable parts. Firstly, the size of history 
set grows exponentially in time. Secondly, the Hilbert space is an 
uncountable set. Thirdly, the Hilbert space dimension grows 
exponentially with respect to the circuit width. We introduce the 
point-based value iteration (PBVI) algorithm from classical 
POMDP to make the approximating planning tractable and resolve 
the first and second issues. For the quantum Hilbert space, we 
perform exact filtering and do not make any approximation. Hence 
the calculations involving the belief state scale exponentially with 
respect to the number of qubits. We further consider two types of 
applications: the problem of state preparation and energy 
minimization. The proposed algorithm was able to make Bell state 
and GHZ state for state preparation. The algorithm is able to 
discover the low energy states for the H2 and H-He+. The 
experimental results show the applicability of QOMDP to quantum 
control at the circuit level. Comparing to variational quantum 
eigen solver (VQE) [32, 33, 34, 5] approach where the variational 
ansatz has to be chosen empirically, the QOMDP approach allows 
automatic search over a wide range of possible ansatzes.  

2. Method 

QOMDP [21] is defined by Q = {𝒮, 	𝒪, 	𝐴, 	𝑅, 	𝛾, |𝑠>⟩}. 𝒮 is the 
Hilbert space of the system. 𝒪 = A𝑜C,⋯ , 𝑜|𝒪|E  is the set of 
observations, where |𝑋| denotes the cardinality of a set 𝑋. 𝐴 =
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G𝐴HI,⋯ , 𝐴H|J|K is the set of transition operators, and each operator 

𝐴H	 = A𝐴(I
H ,⋯ , 𝐴(|𝒪|

H E  has |𝒪|  Kraus matrices. The conditional 

probability of getting the observation 𝑜  when executing the 
action 𝑎 in the state |𝑠⟩ is  

Pr(𝑜||𝑠⟩, 	𝑎) = O𝑠P𝐴(
HQ𝐴(HP𝑠R.  

The state transition is defined by 

|𝑠T⟩(|𝑠⟩, 𝑎, 	𝑜) ←
𝐴(H|𝑠⟩

VO𝑠P𝐴(
HQ𝐴(HP𝑠R

.  

𝑅 = A𝑅HI,⋯ , 	𝑅H|J|E  is the set of operators for rewards. The 
reward of executing action 𝑎 in state |𝑠⟩ is calculated by  

𝑟(|𝑠⟩, 	𝑎) = ⟨𝑠|𝑅H|𝑠⟩.  
𝛾 is the discount rate. |s>⟩ is the initial state. The structure of 

our QOMDP algorithm [20] is presented in Fig. 1. The agent 
selects an action according to the policy and executes the action 
for the environment. The operation 𝐴(H  corresponding to the 
action 𝑎  performed in the environment is executed, and the 
observation 𝑜 is fed back to the agent. The agent also receives a 
reward. The above action-observation-reward sequence is for a 
single time step. This is repeated until the end of the episode. The 
pseudocode is presented in Fig. 2. We simply present the algorithm 
here. The detail derivation and analysis for the algorithm could be 
found in [20]. 
 

 
Fig. 1: QOMDP setting 
 
 
 
 
 
 
 
 

 

 
Fig. 2: Pseudocode for QOMDP-PBVI planning algorithm 
 
 

3. Experiments 

3.1 State preparation 
For the state preparation task, the goal is to find a quantum circuit 

which produces a target state. The circuit is depicted in Fig. 3. 
Some examples of the planning results are demonstrated in Fig. 4. 
The reward matrix is given by 

𝑹𝒂 =\ 𝐴(H
QP𝒔𝐓𝐚𝐫𝐠𝐞𝐭RO𝒔𝐓𝐚𝐫𝐠𝐞𝐭|𝐴(H

(
,  

and hence the reward is the state fidelity. 
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Fig. 3: State preparation circuits 
 

 

 

 

 

Fig. 4: QOMDP planning result for Bell-GHZ state. The circuits 
and the output density matrices are shown. 
 

3.2 Energy minimization 
For the energy minimization task, the goal is to find a quantum 

circuit which produces a minimum energy state for a given 
Hamiltonian H. The reward matrix is given by 

𝑹𝒂 = −\ 𝐴(H
Q𝐻𝐴(H

(
	,  

and hence the reward is the energy expectation. The result for H2 
molecule energy minimization is shown in Fig. 5. 

 
Fig. 5: Energy minimization results for H2 molecule. Energy unit 
is Hartree. Error bar denotes one standard deviation over 100 
executions. 
 

4. Conclusion 
In this report, we propose a point-based value iteration QOMDP 

planning algorithm. State preparation and energy minimization 
applications are demonstrated. Numerical simulations provide 
proof-of-concept examples of the applicability of the proposed 
algorithm. One future direction is to look for suitable method to 
reduce the computational cost for the classical planning part of the 
algorithm. 
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