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Abstract: Quantum kernel method is one of the key approaches to quantum machine learning, which has the ad-
vantages that it does not require optimization and has theoretical simplicity. By virtue of these properties, several
experimental demonstrations and discussions of the potential advantages have been developed so far. However, as is
the case in classical machine learning, not all quantum machine learning models could be regarded as kernel meth-
ods. In this work, we explore a quantum machine learning model with a deep parameterized quantum circuit and
aim to go beyond the conventional quantum kernel method. In this case, the representation power and performance
are expected to be enhanced, while the training process might be a bottleneck because of the barren plateaus issue.
However, we find that parameters of a deep enough quantum circuit do not move much from its initial values during
training, allowing first-order expansion with respect to the parameters. This behavior is similar to the neural tangent
kernel in the classical literatures, and such a deep variational quantum machine learning can be described by another
emergent kernel, quantum tangent kernel. Numerical simulations show that the proposed quantum tangent kernel out-
performs the conventional quantum kernel method for an ansatz-generated dataset. This work provides a new direction
beyond the conventional quantum kernel method and explores potential power of quantum machine learning with deep
parameterized quantum circuits.

1. Introduction
Applying quantum computers to machine learning purposes is

an emerging area of research. In particular, motivated by the re-
cent advance of hardware technology [3], techniques to apply
so-called noisy intermediate quantum (NISQ) devices [23] are
rapidly developed [6], [7], [12], [21], [26]. One direction that is
frequently explored is a variational method which use parameter-
ized quantum circuits to construct a model y(x, θ) which outputs a
prediction when fed with an input data x. More specifically, using
a parameterized quantum circuit U(x, θ) with trainable parame-
ters θ, we construct a model y(x, θ) for an input x by the expecta-
tion value of an observable O: y(x, θ) = ⟨0|U†(x, θ)OU(x, θ) |0⟩.
Since there are quantum circuits that are hard to simulate clas-
sically and can be implemented on present hardware [3], using
such types of circuit for U(x, θ) we might be able to construct a
machine learning model that exceeds the capability of classical
computers.

Another promising direction is the so-called quantum kernel
method [12], [24], [26]. In this approach, we use quantum com-
puters solely for preparing a classically intractable feature |ϕ(x)⟩
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and taking the inner products of the feature vectors. The train-
ing is performed on a classical computer using the values of inner
product between each pair of training dataset. It is advantageous
in that we do not have to optimize the quantum circuit, which is
often difficult in the aforementioned variational methods. More-
over, it can be shown that the quantum kernel method outperforms
the variatinal ones in a certain sense [24]; if U(x, θ) takes the form
of U(x, θ) = V(θ)Uϕ(x), then the quantum kernel method with
feature vector |ϕ(x)⟩ = Uϕ(x) |0⟩ is guaranteed to achieve better
prediction accuracy for training dataset. Its simple framework
greatly advanced the construction of quantum machine learn-
ing theory, providing insights on potential advantages [13], [20].
Also, owing to its experimental easiness, there have been sev-
eral experimental demonstrations of the method [5], [10], [16].
However, as is well known in the machine learning field, not all
machine learning models can be described by kernel methods,
and there must be approaches that go beyond them, such as deep
learning.

In this work, we explore how to construct a quantum ma-
chine learning model that goes beyond the conventional quan-
tum kernel method. To this end, we investigate the performance
of a model constructed by deep quantum circuit in the form of
U(x, θ) =

∏
i Vi(θi)Uϕ,i(x). The circuit is now not in the form of

U(x, θ) = V(θ)Uϕ(x), and hence this model cannot be translated
to a kernel framework. Unfortunately, as parameterized quantum
circuits become deeper and go beyond the conventional quantum
kernel method, it becomes more difficult to train the parameters
as was the case with deep neural network in the classical litera-
ture. While this issue would be resolved by finding a good ansatz
and/or initial parameters [8], [11], [22], we consider an alterna-
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tive approach, i.e., overparameterization [15], [17], [27].
More precisely, we find that, when the circuit is deep enough,

each of the parameters in θ does not move much and stays close
to the initial random guess. This behavior is similar to the clas-
sical deep neural network [14], where the amount of change in
the parameters is small, and the network is well described by a
linear model with the tangent on the parameters as the basis func-
tion. Thus optimized parameters on overparameterized networks
can be found by another kernel, so-called neural tangent kernel.
The observation motivates us to propose quantum tangent kernel
(QTK), which is a quantum analog of neural tangent kernel [14].

Specifically, we define QTK by the kernel associated with a
feature map x→ ∇θy(x, θ) for a deep parameterized quantum cir-
cuit. The QTK can be calculated efficiently on a quantum com-
puter by using analytical differentiation of parameterized quan-
tum circuits, so-called parameter-shift rule [21], [25]. Then, QTK
combined with the standard kernel methods such as support vec-
tor machine (SVM) allows us to learn and infer without any ex-
plicit optimization of the parameterized quantum circuit. We
compare the performance of QTK and the conventional quan-
tum kernel method for an “ansatz-generated” dataset generated
by a deep parameterized quantum circuit, while the parameters
are randomly chosen apart from those in the QTK. As a result,
we find that QTK outperforms the conventional quantum kernel
method. This and the fact that tangent kernel is justified only in
the overparameterized limit imply that deep parameterized quan-
tum circuits have a great potential to go beyond the conventional
quantum kernel model. This work opens up a new direction be-
yond the conventional quantum kernel method for deeper quan-
tum machine learning.

2. Background
2.1 Kernel methods

In this subsection, we explain the kernel method and support
vector machine (SVM), which is one of the kernel-based classi-
fication methods. Throughout this paper, we denote the training
dataset by D = {(xi, yi)}Ni=1 where xi is input data and yi is corre-
sponding teacher data.

The kernel method is a technique for mapping features to
a higher dimensional feature space in order to introduce non-
linearity to the model. It employs a non-linear map ϕ from the
original space to the higher dimensional feature space:

ϕ : χ→ H , (1)

xi → ϕ(xi) ,

where χ is an original space of the data and H is a higher di-
mensional feature space. In the kernel method, we only use inner
products of ϕ with respect to different input data. For two data xi

and x j, we define

K(xi, x j) = ⟨ϕ(xi), ϕ(x j)⟩ , (2)

where ⟨·, ·⟩ denotes the inner product on H . The kernel method
has the advantage that it does not require direct computation of
the vectors in a high-dimensional feature space as long as their
inner product can be calculated efficeintly. This inner product

represents the similarity between the features and is called the
kernel function.

As an example of the kernel method, we consider SVM, which
is one of the kernel-based classification methods. SVM with ker-
nel K(xi, x j) is trained by maximizing the following objective
function

LD(α) = −
1
2

N∑
i, j=1

αiα jyiy jK(xi, x j) +
N∑

i=1

αi , (3)

subject to
∑N

i=0 αiyi = 0 and αi ≥ 0. LD depends only on the ker-
nel function, and hence we do not need to explicitly calculate the
feature map ϕ. The solution α∗i to the above optimization problem
is used for building the prediction model as follows:

y(x) = sign

 N∑
i=1

yiα
∗
i K(xi, x) + b

 , (4)

where the bias b is calculated as,

b = y j −

N∑
i=1

α∗i yiK(xi, x j) . (5)

Although the formula of bias b holds for any j, practically, the
average for all j is taken.

2.2 Neural Tangent Kernel
Let us denote by f (xi, θ) the output of a neural network where

θ is parameters in the network, and xi is the input data. In the
large width overparameterized neural network, the values of the
parameters change only slightly from the initial values during
training even if the initial values of parameters are set randomly
[14]. Therefore, the output of such a neural network can be well
approximated by the first-order expansion with respect to the pa-
rameters around the initial values:

f (xi, θ) ≃ f (xi, θ0) + ∇θ f (xi, θ0)T (θ − θ0) , (6)

where θ0 is the initial values of parameters of a neural network.
This approximation allows us to interpret the neural network as a
linear model with a feature map

ϕ(x) = ∇θ f (x, θ0) . (7)

Using this feature map, we define the following kernel called neu-
ral tangent kernel (NTK) [14], [18].

Kntk(xi, x j) = ∇θ f (xi, θ0)T∇θ f (x j, θ0) . (8)

By its construction, NTK-based linear models are expected to be
equivalent to the large-width neural network as long as the as-
sumption Eq. (6) is valid.

2.3 Quantum machine learning as a kernel method
Conventional variational quantum machine learning models

[12], [21], [26] work in the following manner. First, data are
encoded into quantum states by Uϕ(x). Then, we apply a train-
able parameterized circuit V(θ). Finally, we measure the expecta-
tion value of an observable O, which is used as the model output
y(x, θ). Mathematically, the above process can be written as,
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y(x, θ) = ⟨0n|U†ϕ(x)V†(θ)OV(θ)Uϕ(x)|0n⟩ . (9)

The correspondence of this model to a linear model can be readily
seen by rewriting the above expression as,

y(x, θ) = Tr(O(θ)ρ(x)), (10)

where

O(θ) = V†(θ)OV(θ) , (11)

ρ(x) = Uϕ(x)|0n⟩ ⟨0n|U†ϕ(x) (12)

Since Tr(A†B) for operators A and B defines an inner product in
the operator space, Eq. (10) defines a linear model using the fea-
ture vector ρ(x) and the weight vector O(θ) [24]. Therefore, if
we construct a kernel-based model using the same feature vector
ρ(x), it is guaranteed to achieve better performance on a training
dataset than the model in Eq. (10). In this case, we define the
kernel function as,

Kq(xi, x j) = Tr(ρ(xi)ρ(x j)) (13)

= |⟨ϕ(xi)|ϕ(x j)⟩|2 , (14)

where |ϕ(x)⟩ is defined as follows

|ϕ(x)⟩ = Uϕ(x)|0n⟩. (15)

We call the kernel methods that are based on Kq(xi, x j) the con-
ventional quantum kernel method.

The above argument only holds for a quantum model y(x, θ) =
⟨0|U†(x, θ)OU(x, θ) |0⟩ with U(x, θ) in the form of V(θ)Uϕ(x).
We propose quantum circuits that cannot be splitted in such a
way in Sec. 4. This modification prevents us from rewriting the
model into the form of Eq. (10), and thus we cannot construct an
equivalent kernel model.

3. Quantum Tangent Kernel
In this section, we apply the formulation of the NTK described

in Sec.2.2 to parametrized quantum circuits. We consider a model
whose output is given as the expectation value of an operator O
as,

y(x, θ) = ⟨0n|U†(x, θ)OU(x, θ)|0n⟩ , (16)

where x is the input data and θ are parameters of a quantum cir-
cuit. We define the following kernel by using the output of a
quantum circuit analogous to the NTK.

Kqtk(xi, x j) = ∇θy(xi, θ0)T∇θy(x j, θ0) . (17)

We call the kernel Kqtk(xi, x j) quantum tangent kernel (QTK). As
in NTK, QTK is valid as long as the parameters do not change
much from their initial random guess θ0 when, for example, up-
dating them by gradient descent based with respect to some suit-
able cost function.

We can numerically check that such a phenomena occurs for
quantum circuits with a large number of layers. To this end, we
train quantum circuits with varying numbers of layers and look at
the changes of their parameters. Using a 4-qubit circuit as shown
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Fig. 1 The m-qubit ansatz used for numerical simulations. Uϕ(x) is the
quantum feature map for encoding classical data. U(θ(i)

j ) ∈ S U(4)
is the parameterized unitary of the i-th layer. At the output, we mea-
sure the Pauli Z expectation value of the final qubit.

in Fig. 1, we train them on the iris dataset [1], [9]. In this nu-
merical experiment, the quantum feature map to encode the data
is given by Uϕ(x) =

⊗4
i=1 exp(ixiYi). The initial values of the

parameters of these quantum circuits are set randomly using a
uniform distribution between 0 and 2π. We use the mean squared
error as the loss function and the standard gradient descent to train
the quantum circuits. Fig. 2 (a) shows the relative norm changes
in the parameters of the quantum circuits with layers L = 1, 3, 10
and 20. We can observe that when a quantum circuit has more
layers, the changes of the parameters during training becomes
small. As shown in Fig. 2 (b), the training loss for each quantum
circuits decreases which indicates the success of training. This
result implies that it is possible to linearly approximate y(x, θ)
with respect to its parameters when the circuit is sufficiently deep.
Hence, we can expect QTK to provide a machine learning model
that is approximately equivalent to y(x, θ).

For a given ansatz, the QTK can be calculated on a quantum
computer with parameter-shift rules [21], [25] and its generaliza-
tions [4], [28]. This provides us an alternative quantum machine
learning model other than the conventional variational methods
and quantum kernel methods. Note that, as opposed to the case
of the NTK [2], [14], currently we do not know how to calculate
the QTK analytically for a given form of ansatz in the infinite size
limit. We leave this direction as an interesting future direction to
explore.

4. Numerical Experiment
We numerically demonstrate the expressive power of quantum

tangent kernel. Here, we consider two types of quantum tangent
kernel according to how the data is encoded into quantum states.
First one is a circuit where x is encoded only at the first layer as
in Fig. 1:

Ushallow(x, θ) = V(θ)Uϕ(x) , (18)

where V(θ) is a parameterized unitary and Uϕ(x) is a quantum
feature map to encode data. This type of quantum circuit can be
interpreted as the conventional quantum kernel method. We call
the QTK associated with this type of ansatz shallow QTK. Next,
in order to increase the non-linearity, we consider a multi-layered
circuit that alternates between data encoding and a parameterized
unitary as shown in Fig. 3. More concretely, we consider the fol-
lowing unitary:

3ⓒ 2022 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2022-QS-6 No.4
2022/7/7



(a)

(b)

Fig. 2 (a) Relative norm change in the parameters of the quantum circuit
from initial values during training by gradient descent. θ(n) is the
parameter at the n-th iteration. (b) Behavior of training losses for
different number of layers during training.
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Fig. 3 Quantum circuit that defines deep quantum tangent kernel. Uϕ(x) is
the feature map and U(θ(i)

j ) ∈ S U(4) is the parameterized unitary of
the i-th layer. To increase the non-linearity of the kernel, the fea-
ture map Uϕ(x) and the parameterized unitary are iteratively applied.
At the output, we measure the Pauli Z expectation value of the final
qubit.

Udeep(x, θ) =
L∏

i=1

[
V(θi)Uϕ(x)

]
. (19)

We call the QTK associated with this type of ansatz deep QTK.
Since Udeep has higher non-linearity, it is expected to show

higher expressive power than shallow QTK. In order to demon-
strate the expressive power, we generate a “ansatz-generated”
dataset by using a quantum circuit for Udeep and classify the data
using SVM with the three types of kernels: shallow QTK, deep
QTK and conventional quantum kernel defined by the feature
map Uϕ(x). If this data is classified efficiently by SVM with deep
QTK, it has higher expressive power than the other two.

In this numerical experiment, we use Uϕ(x) in the form of,

Uϕ(x) = exp

i ∑
S⊆[m]

ϕS (x)
⊗
i∈S

Yi

 , (20)

where Yi is the Pauli Y operator acting on the i-th qubit. In our
experiment, interaction up to 2-qubit |S | ≤ 2 is given and acts on
the initial state |0n⟩. This type of quantum feature map has been
proposed in Ref. [12]. The functions ϕi(x) and ϕi j(x) are given
by,

ϕi(x) = arcsin(xi) , (21)

ϕi j(x) = arcsin (xix j) . (22)

The “ansatz-generated” dataset is generated in the following
manner. Four dimensional random value data {xi} are inputted
into Udeep(x, θ) consisting of n = 4 qubits and L = 10 layers.
Then, we evaluate the expectation value

l(xi, θ) = ⟨0n|U†deep(xi, θ)Z4Udeep(xi, θ)|0n⟩ (23)

with a randomly chosen θ. We label each xi as 1 and -1 if
l(x, θ) ≥ 0 and l(x, θ) < 0, respectively. We generate the 15,000
samples of the four dimensional input data xi and its label yi.
They are splitted into 10,000 training and 5000 test data.

We classify the above dataset with SVM using three different
kernels: shallow QTK (Eq. (17) with U(x, θ) = Ushallow(x, θ) and
L = 10 layers), deep QTK (Eq. (17) with U(x, θ) = Udeep(x, θ)
and L = 10 layers) and conventional quantum kernel (Eq. (13)).
In order to calculate QTK and deep QTK, we randomly set pa-
rameter values of a quantum circuit using a uniform distribution
between 0 and 2π. Note that the parameters used in this learning
phase is different from the one used for data generation. We apply
U(θ( j)

i ) ∈ S U(4) on each neighboring qubits. S U(4) is parame-
terized according to Cartan decomposition as follows

U(θ( j)
i ) = (24)

k1 exp
[ i
2

(θxxXiXi+1 + θyyYiYi+1 + θzzZiZi+1)
]

k2 .

where k1, k2 ∈ S U(2) ⊗ S U(2) and Xi, Yi, Zi are the Pauli opera-
tors. QTKs are calculated by the parameter-shift rule [21], [25].
The regularization strength is determined via cross-validation for
each kernel.

The results of the classification task are listed in Table 1.
Among three kernels, deep QTK outperforms other kernels. This
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Kernel Accuracy
Quantum kernel 0.7842

Shallow quantum tangent kernel 0.7484
Deep quantum tangent kernel 0.812

Table 1 Classification accuracy for SVM with three types of kernels. Three
SVMs classify the ansatz-generated dataset generated by a quan-
tum circuit for deep QTK as shown in Fig.3.

result indicates that deep QTK employs a feature map that can-
not be expressed very accurately with other kernels. In contrast,
shallow QTK is essentially just a quantum kernel method using
the feature map in Eq. (18), so its performance is not improved
compared to conventional quantum kernel as expected.

The expressive power of kernels can be illustrated more di-
rectly by visualizing the feature map of each kernel. Fig. 4
shows the distribution of the ansatz-generated dataset generated
by quantum circuits for Ushallow(x, θ) and Udeep(x, θ). In order to
visualize the distribution, we generate two dimensional data us-
ing the two-qubit quantum circuits. These distributions show that
Udeep(x, θ) expresses higher non-linearity than Ushallow(x, θ) does.

(a)

(b)

Fig. 4 (a) The distribution of outputs of the quantum circuit with L = 10
layers (Fig. 1) which can be interpreted as the conventional quantum
kernel method. (b) The distribution of outputs of the quantum circuit
with L = 10 layers (Fig. 3) beyond the conventional quantum kernel.

5. Conclusion
We proposed quantum tangent kernel (QTK) and deep quan-

tum tangent kernel which cannot be interpreted as conventional
quantum kernel methods described in Ref. [24]. QTK is defined

by applying the formulation of NTK to parametrized quantum cir-
cuits. We find that parameters of an overparameterized quantum
circuit change only slightly from its initial values during training.
This indicates that the output of an overparameterized quantum
circuit can be linearly approximated, which validates the formu-
lation of QTK. By using this overparameterization, we can avoid
the gradient descent for quantum circuits with a large number of
parameters and easily optimize the parameters. Then, in order to
increase the non-linearity of a feature map, we introduced a multi-
layered data encoding that alternates between data encoding and
a parameterized unitary. This encoding method increases non-
linearity of the feature map and improves the expressive power of
kernels.

We demonstrated the performance of shallow QTK and deep
QTK for the classification task. Using the ansatz-generated
dataset generated by the quantum circuit for deep QTK (Eq. (19)),
we evaluate the performance by using SVM with three kernels:
shallow QTK, deep QTK and conventional quantum kernel. We
showed that SVM with deep QTK outperforms SVM with other
kernels and deep QTK has a feature map with high non-linearity.

Our results imply that deep parameterized quantum circuits
with repetitive data encoding unitary have a higher representa-
tion power and better performance for quantum machine learning
than the conventional quantum kernel method. While we here
employed an overparameterization limit and hence a deeper quan-
tum circuit to take the neural tangent kernel approach, sophisti-
catedly trained neural networks, such as deep neural networks,
provide a better performance in general than neural tangent ker-
nels as known in the classical literatures [19]. It gives us hope
that the real fruit of quantum machine learning is not in the shal-
low or deep limit, but in the mild depth, which could be modeled
by neither conventional nor tangent kernel methods. Therefore,
better ansatz constructions and parameter optimization methods
are crucially important.
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