v 7 by =27 LE¥ 104—5
(1995. 5. 31)

Methodology for the Semantical Behavior Checking of Distributed
Systems Specification

Issam A . Hamid Reinhard Gotzhein
Tohoku University of Art & Design University of Kaiserslautern,
Yamagata, JAPAN Kaiserslautern, Germany
Abstract

The task of modeling and specifying distributed systems can be subdivided into two major
steps. Firstly, there is the system architecture addressing structural aspects. Secondly, there is
the system behaviour defining the allowed sequences of visible actions performed by system
components at external interfaces. In previous results it has shown how static system
architectures, i.e., architectures that remain unchanged during system execution, can be
modeled, specified, and refined using the formalism of first-order temporal logic. In this paper
these results will be generalized to cover some aspects of dynamically evolving architectures of

distributed systems. Implications on the notion of architectural refinement are addressed, too.

D AT AIBERET S ERRIIRSFL

FTAYL NIEER bAUNY R dJdu¥ar
HILEWMIRKE HAHF—O—FIL o KE

WRFYA VERL, R BEIEH, h¥—O-—FL>, K1Y

DN RATFLEETFIMELERILT 29013, 2DDEBELRERBICHITISZL
NTED, B, YATAT—FToFvid. BENAALCMHAEDFSNS, X
2. PRFARERDBWE. PRAFLIVKR—RV bERTTHARNAT I3
VDY—HS U REEET S, BEORRBRETIE, MEREEZERLTIZLICK
U, WHICLTHENT —F T F v BETFIMEEN, ke h, EHchdnz
RUI, BRTHE, SBCRTADT —F T 0 F ¥ ZBNITEESEIN<DOHD
MEZEALS D EETRY.

1 Introduction

Today, large systems are usually distributed
and concurrent. However, distributed systems
are very difficult to design and to implement,
particularly because of the risk of timing-related
errors. The rate of failure of distributed systems
is many times higher than for sequential
systems. Therefore, the topic of design methods
and techniques for distributed systems is
currently one of the most important research
areas in Computer Science.
The task of modeling and specifying distributed
systems can be subdivided into two major steps.
Firstly, there is the system architecture
addressing structural aspects. Secondly, there is
the system behaviour defining the allowed
sequences of visible actions performed by
system components at external system
interfaces. In [Got93], we have argued that
specifying the system architecture should be
among the first design steps, and be as rigorous
and formal as the specification of the system
behaviour. Therefore, we have proposed a
formal framework capable of addressing both
aspects. This is different from other techniques
which do not give a semantics to the structure of
a specification and thus to the architecture of the
specified system. A restriction of the approach
has been that only static system architectures,
i.e. architectures that remain unchanged during
system execution, can be modeled, specified,
and refined. However, large systems are usually
evolving dynamically, and therefore require the
possibility of treating dynamical changes of their
structure.

In the Basic Reference Model for Open
Systems Interconnection ([ISO81]), e.g., the
concept of service-access-point is introduced: "a
service-access-point is the access means by
which a pair of entities in adjacent layers use or
provide services"; and: "an (N)-service-access-
point is only attached to one (N+1)-entity at a
time"; "an (N)-service-access- point may be
reattached to the same or another (N+1)-entity".

Clearly, this indicates that certain dynamical
changes of the system architecture during
execution are within the scope of the Basic
Reference Model and should therefore be
formally specified.

Another example where dynamic architectures
are used is the concept of the federated trader
stemming from the area of Open Distributed
Processing (ODP, [ISO93]). By means of the
trader, a service user can dynamically establish
and release an association with a service
provider. This means that some mechanism is
required to temporarily attach a service user and
a service provider to a common interaction
point. Further examples subject to architectural
evolution are mobile communication and
Intelligent Networks.

In this paper, we extend and generalize
previous results on modeling and specifying
architectures of distributed systems by treating
dynamic architectures. The organization of the
paper is the following: in Section 2, we give an
outline on how to model, specify and refine
static system architectures. In Section 3, this
model is extended and generalized; implications
on the notion of architectural refinement are
addressed, too. Section 4 draws some
conclusions.

2 Static architectures of distributed
systems

In this section, previous results on the
modeling, specification and refinement of
distributed systems will be summarized. The
view taken here is that a system consists of the
system architecture and the system behaviour.
Elementary concepts are used to define these
system aspects. For further details, see [Got93].

2.1 Elementary concepts

We start with the informal introduction of a very
small number of elementary concepts. They
form the starting point for the definition of
several derived concepts. Due to their
elementary nature, these concepts cannot be

formally defined. All that can be stated at this
point is that these concepts are disjoint.
Definition (elementary concepts):

* An agent ag € AG is a component performing
actions.

e An interaction point ip € IP is a conceptual
location where actions may occur.

» An action (sometimes called action occurance)
a € Act is something that happens.

- Agent, interaction point, and action are disjoint
concepts, i.e.,

AGANIP=AG NnAct=1IP n Act={}

An action is performed by an agent or a set of
agents, it may be internal or may occur at some
interaction point or a set of interaction points.
An agent thus is the carrier of actions, it can be
characterized by its behaviour. This behaviour
(a notion still to be defined) consists of actions
local to the agent. Actions may also be
non-local, such as interactions or transactions.
Non-local actions may be performed by a set of
agents and may occur at a set of interaction
points. Interactions and transactions may also be
considered as high-level actions, i.e., actions
that can be decomposed into smaller units.
Depending on what kind of action is taken as
atomic on a given level of abstraction, the
behaviour of a system can be characterized in
different ways.

2.2 Derived concepts

With the elementary concepts agent and
interaction point, more complex structures
termed system architectures can be composed:
Definition (system architecture):

* A system architecture Arch is a structure
<AG,IP,ArchF > where

- AG is a non-empty set of agents,

- IP is a set of interaction points, and

- ArchF: AG — 2IP is a total function called
architecture function associating with each agent
a set of interaction points.

A set AG* <« AG of agents has one or more

interaction points in common if and only if

U ArchF(ag)#{} . We require as a rule of
ageAG”
composition that a common interaction point is

introduced explicitly into the architecture
whenever a group of agents has the capability to
interact directly. Depending on the kind of
interaction, two or more agents may in general
be Whether such

interactions will actually take place also depends

involved in interactions.

on the behaviour.

Figure 2.1 shows a graphical representation of
an architecture Archl formally specified in Table
2.1. From this architecture we can infer that
ag], ag2, and ag3 have the capability to interact,
however, we can not yet say whether they will

actually do so.

N

Graphical representation of

ag, ag,

Figure 2.1:
architecture Archy

This can only be derived from the behaviour of
the agents and the interaction point.

Archl =({ag,ag>,ags),{ip},ArchF)
ArchF(ag,) = {ip}
ArchF(ag,) = {ip}
ArchF(ag,) = {ip}
Table 2.1:
architecture Archl

Formal specification of

With the elementary concept action, more
complex structures termed behaviours can be
composed. A behaviour is specified as a
conjunction of logical formulae, each expressing
a restriction on the individual behaviour of a
system component. The behaviour refers to
externally visible actions, which are associated

with system components and therefore contain
some reference to the system architecture.
Definition (system behaviour):

* Let Arch=(Arch, IP, ArchF) be asystem
architecture, Behavag be the behavioural
specification of agents ag € AG, and
Behavip be the behaviour of interaction points
ip € IP. The system behaviour Behav is given
as the conjunction of the component behaviour,

1e.,:

Behav=pr A Behavyz;a A Behavj,

age AG
Note that each system component is

ipe 1P

characterized by "local” properties. Non-local
properties may be derived by logical reasoning.
Having introduced system architectures and
system behaviours, we can combine them into
the derived concept of system.

Definition (system):

« Asystem S is a structure (Arch, Behav),
where Arch is a system architecture and Behav
is a system behaviour.

2.3 System Refinement

A notion of system refinement should take
both system architecture and system behaviour
into account. In general, it is desirable that the
refinement of a single component (architecture
and/or behaviour) has no influence on the other
components. Only then will it be possible to
perform incremental system design and modular
verification, which is a prerequisite for the
development of large systems. By incremental
system design, we mean that we can modify or
replace a part of the system without affecting the
other parts. Modular verification means that
only the modified or replaced parts have to be
verified, not the entire system. To allow for
incremental system design and modular

verification, we have to make suitable
restrictions with respect to architecture and
behaviour.

A system $' refines a system $, if $ is
equivalent to or more specific than S . With
respect to the system architecture, this is the
case if all agents and interaction points of $ are
represented in S’, and if their composition is
maintained in 5’. This is captured by the notion
of architectural refinement below. Concerning
the behaviour, $° is equivalent to or more
specific than S’ if the behaviour of $* logically
implies the behaviour of $’ mapped to the
abstraction level of $§’. This mapping is
expressed by a representation function rep.

Definition (system refinement):

+» Let §= (Arch,Behav) and

$’ = (Arch',Behav') be requirement
specifications. S* is a refinement of S under
the representation function rep (written "S
refinesrep S$”) if and only if the following is
satisfied :

- Arch’ refines o, Arch

- I=; Behav' o rep(Behav)

With respect to architectures, we require that
agents and interaction points be refined
separately. In other words, a single component
of the refinement (an agent or interaction point)
is uniquely related to a single component of the
refined architecture. Also, we require that the
number of interaction points an agent is
associated with remains the same. These and
further architectural - constraints can be
formalized as follows:

Definition (architectural refinement):

» Let Arch = (AG,IP,ArchF) and Arch' =
AG',IP', ArchF') be architectures. Arch'is an
architectural refinement of Arch (written "Arch’
refines o, Arch”) if and only if there is a
refinement function refArch : AG U IP—
9AGUIP such that the following restrictions

hold:
- Each component of Arch is refined, ie.,
refarch is a total function.
- The refinement of an agent must include at
least one agent. Formally:
¥V ag € AG. refarch(ag) N AG' # {].

- The refinement of an interaction point must
include at least one interaction point:

¥ ip €1P. refarch (ip) » 1P" = {}.
- Each agent and each interaction point is
refined separately, i.e., the refinement is
disjoint:

Vx,y € AG u IP. (x #y implies
refarch (X) N refarch (¥) = (D
- AG'is the set of exactly those agents resulting
from the refinement, i.e.,

AG'=

(U refarcn(ag) v U refarch(ip)\IP".
age AG ipe 1P
- IP' is the set of exactly those interaction

points resulting from the refinement, i.e.,
IP' =

U refaren(ip) v U refarch(ag)\AG".

ipeIP age AG
- If an agent ag € AG is associated with an
interaction point ip (E IP, then exactly one agent
of the refinement of ag must be associated with
exactly one interaction point of the refinement of
ip. Formally:
V ip € IP. Vag € AG. ip € ArchF(ag)

implies;
(Irefy, (ip) V AG' My oy U e ATChE (ag') |
Arch

and

I{ag' € ref,,, (ag) \ IP'1 ArchF' (ag') m ref,,, (ip) \AG #
{1}1=1

Figure 2.2 shows the graphical representation of
a possible refinement Archl’ of the interaction
point ip (compare Figure 2.1), which on a lower
level of abstraction comprises an agent ag that
can interact with ag1, ag2, and ag3 through ip],
ip2, and ip3, respectively. It is necessary to
introduce interaction points in the refinement,
because otherwise the rule of composition of
architectures about their explicit introduction
would be violated. Also, we notice that the
duality between agents and interaction points is
nicely carried into the refinement.

When we use temporal logic to characterize
system behaviour, we require that a property
must hold in the initial state of execution
(properties holding throughout the execution can
be defined temporal
operators). To express this formally, we use the

using appropriate

notion of initial validity.

Figure 2.2: Graphical representation of

the architectural refinement of Archl’.

Arch]' =/
{agy.agp,ag3.ag},{ip1,ip2,ip3},ArchF")
ArchF'(ag) = {ipy.ip2.ip3}

ArchF(ag1) = {ip1}

ArchF'(ag2) = {ip2}

ArchF'(ag3) = {ip3}

Table 2.2: Formal specification of
architecture Archi

A formula ¢ is initially-valid, written I=; ¢, iff
¢ is initially-valid in all models ([Got93]).
Therefore, it is sufficient to require Behav' 5
rep(Behav) to be initially-valid.

3 Dynamic architectures of distributed
systems

restricted architecture of the example, it is
possible to enumerate all legal scenarios.
However, this is not feasible in general,
therefore, other specification styles are
needed.An alternative would be to characterize
the legal scenarios by a set of properties, as
shown in the formal specification in Table 3.2.
These properties leave room for the dynamic

In general, every part of the systemeyoution of the system architecture within

architecture may undergo some dynamic
evolution. E.g., the architecture function ArchF
may be dynamically modified, thus changing the
set of interaction points to which some agent is
attached. Also, the sets AG and IP may be
changed by creating or removing agents and
interaction points, respectively. In the
following, we will concentrate on the dynamical
changes of the architecture function ArchF and
the implications on the notion of architectural
refinement. This seems to be sufficient to
capture the dynamic evolutions of the Basic
Reference Model for OSI and the ODP trading
mechanism mentioned in Section 1.

3.1 Modeling and specifying dynamic
architectures

Consider the Basic Reference Model (BRM)
for Open Systems Interconnection ([ISO81]).
In Section 1, we have quoted this document

concermning the meaning of service-access-
points. A service-access-point (SAP) can be
interpreted as a specialization of the interaction
point concept. Similarly, entities of the BRM
specialize our notion of agent.

Thus, an architectural scenario as described in
[ISO81] can be represented as shown in Figure
3.1a. This scenario may evolve to scenario 3.1b
and then to 3.1c or back to 3.1.a during system
execution. However, the scenario shown in
Figure 3.1d must be considered illegal, since the
(N)-service-access-point (N)-SAP is attached to
more than one (N+1)-entity at a time.

The scenarios 3.1a through 3.1c can be

formally specified as shown in Table 3.1. In the

certain limits.

a)
layer n+
N)-SAP
w layern
b)
layer n+1
(N)-SAP, -
w layer n
0
layer n+1
N)-SAP
layern
d)
layer n+1
(N)-SAF
layer n

Figure 3.1: Graphical representations of
architectural scenarios of the OSI BRM

E.g., at any moment in time, one of the agents

(N+1)-entity 1 and (N+1)-entity 2 may be
attached to (N)-SAP. However, it is excluded
that both may be attached to (N)-SAP
simultaneously.

Archy = ({(N+1)-entity 1,(N+1)-entity
2,(N)-entity },{(N)-SAP}, ArchF,)
ArchFa((N+1)-entity 1) = {(N)-SAP}
ArchFa((N+1)-entity 2) = {}
ArchFa((N)-entity) = {(N)-SAP}
Archp = ({(N+1)-entity I,(N+1)-entity
2,(N)-entity },{(N)-SAP},ArchFp)
ArchFp((N+1)-entity 1) = {}
ArchFp((N+1)-entity 2) = { }
ArchFp((N)-entity) = {(N)-SAP}
Arche = { {(N+1)-entity I,(N+1)-entity
2,(N)-entity },{(N)-SAP},ArchF¢)
ArchF¢((N+1)-entity 1) = {}
ArchF¢c((N+1)-entity 2) = {(N)-SAP}
ArchFe((N)-entity) = {(N)-SAP}
Table 3.1:
architectures Archy through Arch¢

Formal specification of

(O (Archape = { {(N+1)-entity I,(N+1)-entity
2,(N)-entity },{(N)-SAP},ArchFabc))

(] (Vag € {(N+1)-entity 1,(N+1)-entity 2}.
ArchFabc(ag) © {(N)-SAP})

[J (1 {aglag € {(N+1)-entity 1,(N+1)-entity
2} A (N)-SAP (E ArchFape(ag)} £ 1)

[J (ArchFabe((N)-entity) = {(N)-SAP})

Table 3.2: Property-oriented specification of

architectures Archa through Arche

To emphasize that the architectural properties are
invariant over time, we have applied the
temporal operator ‘henceforth’. Note that as a

special case, static system architectures can be
specified. E.g., (N)-entity will statically be
attached to the interaction point (N)-SAP. Also,
the sets AG of agents and IP of interaction
points are required to remain unchanged during
system execution according to the specification
in Table 3.2.

Formally, we can capture the generalized notion
of system architecture as follows:

Definition (dynamic system architecture):

* A dynamic system architecture Archdyn is
given as the conjunction of properties Archi, I <
i € n, such that for each moment in time,
Archdyn characterizes a system architecture as
defined in Section 2.2:

=pr A Arch;

1<ign

ArChdyn

It should be pointed out that this definition of a
dynamic architecture not capture the evolution of
the architecture completely, but gives a number
of restrictions that the architecture must fulfil at
any moment in time. It is, e.g., still possible
that the system architecture is a static one. The
actual evolution is a behavioural aspect and
therefore has to be specified as part of the
system behaviour. Also, it is still left open
whether an agent is allowed to attach or detach
itself to or from some interaction point, or
whether some distinguished agent is responsible
for all architectural modifications.

3.2 Refinement of dynamic
architectures

As a consequence of the generalization of
system architectures, it is necessary (o
reconsider and generalize the notion of
architectural refinement for static architectures
introduced in Section 2.3. According to that
notion, Arch’ refines ppch Arch, if all agents and
interaction points of Arch are represented in

Arch', and if their composition is maintained in
Arch'. How can this be extended to dynamic
architectures?
A first observation we can make here is that the
restrictions on the dynamic architecture Archdyn
have to hold in the refined architecture
Arch'dyn, too. In other words, the architecture
Arch'dyn has to be equivalent to or more
specific than Archgyp with respect to some
refinement mapping. Formally, we can express
this requirement as follows: I=i Arch'gyp D
rep(Archgyp)
ie, the properties characterizing Arch'gyn
logically imply the properties characterizing
Archdyn when mapped to the abstraction level
of Arch'qyp. As it turns out, this is indeed a
necessary, but not a sufficient condition. To see
why this condition is not sufficient, consider the
specification Archabc in Table 3.2. With the
identity mapping refarch, =i Archape D
rep(Archape) holds. However, at a given
moment in time, we could have the abstract
architecture shown in Figure 3.1.a, while the
refinement is represented by Figure 3.lc.
Therefore, a stronger condition ruling out this
possibility is required.
The crucial observation here is that the dynamic
architecture Arch'dyn has to refine Archgyp at
all moments in time. Formally, this can be
expressed as follows:

=i Arch'gy, refines arch Archgyn
This condition is somewhat stronger than the
first one, because it additionally requires that if
an agent ag of Archgyy is associated with an
interaction point ip at any given moment in time,
then exactly one agent of the refinement of ag
must be associated with exactly one interaction
point of the refinement of ip at that moment in
time.
A drawback here is that the second condition is
more difficult to prove. The difficulty arises
from the additional condition about associated
interaction points. This is not expressed by the
architectural properties alone, but is a

behavioural aspect that can only be derived from
the system behaviour.

This leads us to the following notion of system
refinement:

Definition (system refinement):

« Let §=(Arch,Behav) and §’ =
Arch',Behav') be requirement specifications.
S’ is a refinement of S under the representation
function rep (written "S” refinesrep $”) if and
only if the following is satisfied:

- I= Arch' refines arch Arch

- I=i Behav' o rep(Behav)

4 Conclusions

In this paper, we have presented some
preliminary results on modeling, specifying and
refining dynamic system architectures. We have
considered the evolution of interaction point
associations, as e.g. addressed by the OSI Basic
Reference Model or the ODP trading concept. It
turned out that our definition of a dynamic
architecture does not capture the evolution of
system architecture completely, but has to be
augmented by an appropriate system behaviour.
This aspect needs further study. Also, we have
extended the notion of architectural refinement
to cover dynamic changes. Some criteria have
been identified and formalized that capture our
intuition about such refinements. Case studies
will have to show the practicability of these
criteria when proving the correctness of
distributed systems with dynamic architectures.
Ackowledgment:

This work is sponsored by the International Scientific
Joint Research program of the Ministry of Education &
Science and Culture of Japan.

References

[Got93] Gotzhein, R.: Open Distributed

Systems - On Concepts, Methods and Design from a
Logical Point of View, Vieweg Wiesbaden, 1993
[ISO81] ISO/TCY97/SC16: Data Processing - Open
Systems Interconnection - Basic Reference Model,
Computer Networks 5 (1981), pp. 81-118

[1S093] ISO/EC JTC1/SC21/WG7 N6084: Working
Document on the Trader (ODP Trader), July 1993

