Electronic Preprint for Journal of Information Processing Vol.30

Regular Paper

Cost-aware Programming on Page-based Distributed

Shared Memory

1,a) b) 1

TakaTo HIDESHIMA SHIGEYUKTI Sato!: KENITRO TAURA

Received: August 31, 2021, Accepted: January 11, 2022

Abstract: Page-based distributed shared memory (PDSM) is a programming environment on distributed-memory
computers that allows to freely allocate shared regions in the virtual address space accessible from any computer. It
hides distributed physical memory from programmers and enables shared-memory programming over the uniform vir-
tual address space. PDSM systems are typically equipped with coherent cache to improve performance while hiding
communication, but the management cost is considered implementation details and is complex and implicit. Conse-
quently, it is easy to fail in gaining speedup, and it is difficult to perform cost-aware programming to solve it. In this
study, we explore cost-aware programming for ArgoDSM, a state-of-the-art PDSM. Particularly, based on the ob-
servation that there are three effective measures for reducing PDSM-derived costs: 1) informing PDSM of changes in
access patterns to shared regions, 2) inspecting the data to be placed in shared regions, and 3) performing writes with an
awareness of the original owner of the shared region, we extend the ArgoDSM with APIs to help in these measures. We
performed cost-aware programming on the extended ArgoDSM for benchmark programs, and experimentally showed
that PDSM-derived costs can be significantly reduced. The proposed programming measures significantly improve the
situation, where the performance is below the sequential performance, and allows to benefit from the scalability of

distributed-memory computers under the high-level abstraction of PDSM.

Keywords: page-based distributed shared memory, coherence protocol, performance analysis

1. Introduction

The use of distributed-memory computers becomes practi-
cally inevitable when seeking scalability of computing resources.
Distributed-memory programming, where the distribution and
communication of data are thoroughly under the programmer’s
responsibility, has more room for performance tuning yet high
programming burden. Shared-memory programming, which does
not require programmers to describe data distribution and com-
munication, has less burden on programmers. An attempt to
bridge the gap between the two is distributed shared memory
(DSM), which realizes shared memory on distributed memory.

There are two typical forms of software-implemented DSM
(software DSM): first, remote memory access (RMA) [13] or par-
titioned global address space (PGAS)[29], which involves ex-
plicit operations on globally (i.e., among multiple computing
nodes) shared memory regions. This makes it easier to tune
performance with awareness of the distributed memory layer
because the timing at which communication occurs is explicit.
However, because it requires dedicated APIs for data access,
the code becomes complicated and difficult in interoperabil-
ity with existing codes that do not use RMA. Second, page-
based DSM (PDSM) [2], [4], [6], [8], [14], [16], [22], [26], [31],
which implicitly handles communication through per-page coher-
ent caches. Because access to globally shared memory regions

Graduate School of Information Science and Technology, The University
of Tokyo, Bunkyo, Tokyo 113-8656, Japan
hideshima@eidos.ic.i.u-tokyo.ac.jp

sato.shigeyuki @mi.u-tokyo.ac.jp

a)
b)

© 2022 Information Processing Society of Japan

(i.e., where coherent caches exist) is captured by page protec-
tion, and data is synchronized between nodes transparently to the
application, PDSM provides the same ease of coding as normal
shared-memory programming and high interoperability with it,
however, the cost of coherent actions to synchronize cache data is
large, implicit, and intricate. Consequently, it suffers from perfor-
mance problems, and often underperforms sequential execution
without gaining speedup.

Although existing studies often indicate the large cost of co-
herent actions as a performance problem of PDSM [5], [23], [24],
we believe that the implicit and intricate nature of the cost is a
critical problem, because if the cause of the cost is clear and the
means to control it are provided, then the runtime performance
can be improved by devoting more effort to cost-aware program-
ming. Certainly, the natural tendency of RMA programming to
be aware of the cost of distributed memory makes it easier to im-
prove performance. Further, when seeking high performance on
hardware-implemented DSM in the form of NUMA, it is com-
mon to program with NUMA nodes in mind using tools such as
numactl. On PDSM, however, the cost is implicit and intricate,
making such cost-aware programming difficult.

In this study, we explore cost-aware programming for Ar-
goDSM [16], a state-of-the-art PDSM. Particularly, based on
our observations of the coherence protocol of ArgoDSM, and the
costs incurred by its various parts, we propose the following three
measures to reduce such PDSM-derived costs:

(1) informing PDSM of changes in access patterns to shared re-
gions
(2) inspecting the data to be placed in shared regions

Electronic Preprint for Journal of Information Processing Vol.30

(3) performing writes with an awareness of the original owner
of the shared region

We also extend the ArgoDSM with APIs to help in these mea-
sures. We performed the above measures on the extended Ar-
goDSM for benchmark programs, and experimentally showed
that PDSM-derived costs can be significantly reduced.

The ideas to reduce the cost proposed in this study are com-
monly found in the context of PGAS. However, the current study
investigates the cost quantitatively with the coherence protocol
of ArgoDSM in mind, extends the APIs to put the measures into
practice, and then shows the experimental evaluation of the ef-
fects. To the best of our knowledge, there are no examples of sim-
ilar efforts in the context of PDSM. Therefore, it is expected that
the cost-aware programming practice on PDSM, and the knowl-
edge gained through the performance analysis in this study would
be useful in evaluating the performance aspects of RMA and
PDSM from the programming perspective.

The contributions of this study are summarized as follows:

e We propose cost-aware programming on PDSM and extend
ArgoDSM for this purpose (Section 4). Beyond program-
ming that takes advantage of the same ease of coding as
normal shared memory, it provides means and direction for
reducing latent costs, taking advantage of the scalability of
distributed-memory computers.

e We experimentally evaluated the benefits of cost-aware pro-
gramming measures on ArgoDSM (Section 5). We con-
firmed that the proposed measures reduce the occurrence of
coherent actions, significantly improving the situation where
the performance is below the sequential performance, and al-
lows for gain speedup from distributed-memory computers
under high-level abstraction of PDSM.

2. MPI-3 RMA

MPI, a library standard widely used for communication be-
tween distributed-memory computers, includes an RMA pro-
gramming environment designed to leverage the remote direct
memory access (RDMA) support of hardware. ArgoDSM, the
subject of this study, uses RMA specified in MPI-3 *1[13] as its
communication backend.

In MPI-3 RMA, the regions from each node that accept RMA
from other computing nodes compose a shared region. For RMA
operations, the access target is determined by explicitly specify-
ing the shared region, the computing node, and the offset in the
region from the node.

The main RMA operations are normal read/write (MPI_Get,
MPI_Put) and atomic operations (Accumulate), where atomic-
ity is guaranteed for each object of basic data types. Combin-
ing these with lock operations (MPI_Win_lock, MPI_Win_unlock),
RMA programming without data race is realized.

As mentioned earlier, MPI is a library standard, and there are
multiple implementations. We used Open MPI, which makes the
most use of RDMA’s features [25].

I https://www.mpi-forum.org/mpi-30/

© 2022 Information Processing Society of Japan

3. ArgoDSM

3.1 Overview

Figure 1 shows an overview of a parallel program using the
PDSM system ArgoDSM [16]. ArgoDSM provides applications
with a globally shared memory region, and access to this region
by applications is captured by a segfault handler prepared by Ar-
goDSM. Additionally, when applications spontaneously call re-
lease or acquire, ArgoDSM manages memory using inter-process
communication with MPI-3 RMA. When processes are running
on multiple computing nodes, it works as distributed shared mem-
ory. Subsequently, we assume that one process is running on each
node, and treat a process as a computing node.

Let’s take Listing 1 as an example to see where ArgoDSM per-
forms memory management in parallel programming.

In line 10 and below, shared regions are allocated by argo: :
conew_array. Shared-memory programming is realized as one
computing node initializes the values in the conditional branch
from line 15, and all nodes use them in the main iterative calcu-
lation from line 25.

To achieve this, argo::barrier() in lines 21, 32, and 37 is
spontaneously called by the programmer. This function call has
the same meaning as the sequence of release, execution order
barrier synchronization, and acquire, and the overall meaning
requires that the changes made before the call are visible to all
nodes after the call. The reason for having spontaneous calls to
release and acquire in addition to normal memory access is that,
ArgoDSM adopts the memory model of release consistency [11].
It is known that the results of accesses in this model are equal
to those of sequential consistency, a model that fits well with our
intuition, when there are no data race.

How it reads or writes to the shared regions is implicitly cap-
tured as read-miss or write-miss respectively. Concretely, at the
time of writing to the shared regions in lines 17, 19, 29, and 36,
write-miss may occur and be captured by ArgoDSM. At the time
of reading from the shared regions in lines 27, 33, and 43, read-
miss may be captured.

3.2 Cache Coherence Protocol

The purpose of memory management in DSM is to prepare
caches for access by applications and to provide coherence to the
caches such that changes made will be visible to other computing
nodes as required.

The mechanism for this is called coherence protocol. Listings
2, 3,4, 5, and 6 show pseudo code for the coherence protocol of
ArgoDSM, which can be described in terms of what to do at the
release, acquire, read-miss, and write-miss times.

Notably, the pseudo code represents the caches with a data lay-
out that does not have consecutive virtual addresses between con-
secutive pages. In the implementation, Page elements are held
in a different array, and address continuity is guaranteed when
viewed from the application.

The heart of the ArgoDSM coherence protocol is a cache inval-
idation method called self-invalidation. In this section, we focus
on the write-miss process (Listing 6) to explain self-invalidation.

ArgoDSM records the computing nodes that write to a page

Electronic Preprint for Journal of Information Processing Vol.30

process pre

r~

[

v

v

process process prOCeSS process
(AW 4) f \ (AW 4)
Application
‘‘ &
Ar g oDSM segfault handler
\ VYV V\{ MPI-3 RMA L/ P\

h

v

v

inter-process communication

Fig.1 Overview of ArgoDSM.

(writers) in a shared data structure called a directory (array dir).
Three states are recorded: no-writer, single-writer, and multiple-
writer. In the single-writer state, the ID number of the writer is
recorded (line 16), but in the multiple-writer state, all nodes are
considered to be writers (line 20). Furthermore, ArgoDSM lim-
its the state transitions to one-way, from no- to single-writer and
from single- to multiple-writer.

From abstraction of states and limitation of state transitions,
communication for directory can be reduced by caching directory
values (specifically, dir[page_id] .writer) locally. Moreover,
when transitioning from single- to multiple-writer, it is sufficient
to update only the original directory and the directory cache of
one writer recorded in the directory, and other subsequent writ-
ers can spontaneously transition to multiple-writer based on their
own directory cache. Consequently, the acquire function can
invalidate the cache without receiving any invalidation message.
This is called self-invalidation.

In ArgoDSM, the writer states are coarsely managed as zero,
one, and all, and the state transitions are one-way. Although this
may appear to be an oversimplification at first glance, the simpli-
fication allows for efficient implementation of self-invalidation.
Self-invalidation works effectively for repetitive-write situations
such that, a page written once by a computing node continues to
get written by the same node.

3.3 Overhead
Prior to handling the ArgoDSM overhead, we change the us-
age of MPI-3 RMA in cache fetch and diff sending. First, we
streamline the RMA operations by combining them into a single
call instead of invoking them for each interval that constitutes a
diff. Moreover, we eliminate the acquisition of the exclusive lock
for diff sending by replacing MPI_Get used for fetch and MPI_Put
used for diff sending with accumulate operations that guaran-
tees atomicity, reducing the overhead under communication con-
tention. This change did not make a significant difference in the
overhead when communication contention did not occur.
Table 1 summarizes the measured overhead of the four prim-

© 2022 Information Processing Society of Japan

Table 1 Average execution time of ArgoDSM primitives.

primitive execution time [ns]
release (max. diffs) 180,077
release (no diffs) 5,237
acquire 1,123
read-miss 12,828
write-miss 2,862

itives that constitute the coherence protocol of ArgoDSM after
the change. The experimental environment is described later in
Section 5.

For release, we measured the case of calculating and sending
the diffs generated in one page. Therein, the pattern of the diff (ar-
gument pat of remote_page_write in Listing 3) greatly affected
the overhead. The most time-consuming case we measured was
34.4 times longer than the case where nothing was sent.

Figure 2 shows the relationship between the length of each
segment and the time required for release when 2048 bytes of diff
is sent in equally divided segments. It is not the total amount of
data to be sent, but the number of segments sent that is important,
and the more the segments, the larger the overhead. The result
of sending 2048 1-byte segments (the leftmost point) is labeled
“max. diffs” in Table 1.

Moreover, we measured the following cases: for acquire, elim-
inating the access privilege of one page without sending diffs; for
read-miss, a single read-miss; and for write-miss, a single write-
miss on a page that existed in the cache at that time.

Release, which sends out fragmented diffs, has the largest over-
head by far, followed by read-miss, which fetches a cache from
other computing node. Acquire and write-miss have an order of
magnitude smaller overhead.

4. Cost-aware Programming on ArgoDSM

4.1 Basic Policy

As mentioned in Section 3.3, most overhead of ArgoDSM
comes from part of fetching caches and sending the changes made
to the caches as diffs.

As for diff sending, the overhead per page varies greatly de-

Electronic Preprint for Journal of Information Processing Vol.30

Listing 1 Example of ArgoDSM usage.
size_t SHARED_REGION_SIZE;

1

2 size_t DINM;

3 unsigned int NUM_ITERS;

4

5 int main(Q) {

6 argo: :init (SHARED_REGION_SIZE);

7 int my_rank = argo::node_id(Q);

8 int num_nodes = argo: :number_of_nodes();

9

10 using argo::conew_array;

11 float *mat = conew_array<float>(DIM * DIM),
12 *vec = conew_array<float>(DIM),

13 *reduc = conew_array<float>(num_nodes),
14 *local = new float[DIM];

15 if (my_rank == Q) {

16 ifstream ifs{"input"};

17 copy_n(istream_iterator<float>{ifs},

18 DIM * DIM, mat);

19 fill n(vec, DIM, 1 / sqrt(DIM));

20 }

21 argo::barrier(); // release + sync + acquire
22

23 size_t beg = DIM * my_rank / num_nodes;

24 size_t end = DIM * (my_rank+1) / num_nodes;
25 for (unsigned i = 0; i < NUM_ITERS; i++) {
26 for (size_t idx = beg; idx < end; idx++)
27 local[idx] = inner_product(&vec[0],

28 &vec[DIM], &mat[DIM * idx], 0.);

29 reduc[my_rank] = inner_product(

30 &local[beg], &local[end], &local[beg],
31 0.);

32 argo: :barrier();

33 float scale = 1 / sqrt(accumulate(

34 &reduc[0], &reduc[num_nodes], 0.));

35 for (size_t idx = beg; idx < end; idx++)
36 vec[idx] = local[idx] * scale;

37 argo: :barrier();

38 }

39

40 if (my_rank == 0) {

41 ofstream ofs{"output"};

42 for (size_t idx = 0; idx < DIM; idx++)
43 ofs << vec[idx] << endl;

44 }

45

46 argo: :codelete_array(mat) ;

47 argo: :codelete_array(vec);

48 argo: :codelete_array(reduc) ;

49 delete[] local;

50 argo::finalizeQ);

51 %

pending on the diff pattern that occurs in the page. However, be-
cause the variation is largely owing to the continuity of changes
in bytes, rather than the total amount of changes, there is almost
no chance for application-side devices.

Therefore, our focus is to reduce the total number of pages to
fetch and send the diffs. We propose the following three concrete
policies to achieve this.

First, to reset the cache management state when the access pat-
tern to the shared regions changes (Section 4.2). As described
in Section 3.2, self-invalidation by ArgoDSM is effective when a
computing node writes the same set of pages repetitively. How-
ever, once this condition is no longer satisfied, it increases un-

© 2022 Information Processing Society of Japan

Listing 2 Data types pertaining to caches.

1 struct Page {

2 bool dirty;

3 int8_t data[PAGESIZE];

4 int8_t twin[PAGESIZE];

5 3

6
7 map<unsigned int, Page&> cache;
8
9 struct DirectoryEntry {

10 const int home;

11 const intptr_t origin_addr;
12 int writer;

13 void global_sync(); // one-sided comm.
14 };

16 const int NO_WRITER, ANY_WRITER;
18 DirectoryEntry dir[NUM_PAGES]; // globally shared

20 struct IntraPageInterval {

21 size_t offset;
22 size_t length;
23 };

24 using Pattern = vector<IntraPageInterval>;

Listing 3 Processing in release.

1 void remote_page_write(
2 int dst_rank, intptr_t remote_ptr,

3 int8_t local[PAGESIZE], Pattern pat);
4 Pattern diff_page(

5 int8_t cur[PAGESIZE], int8_t old[PAGESIZE]);
6

7

8

void release() {

for (auto& [page_id, page] : cache) {
9 if (page.dirty) {
10 mprotect(page.data,PAGESIZE, PROT_READ);
11 remote_page_write(dir[page_id].home,
12 dir[page_id].origin_addr, page.data,
13 diff page(page.data, page.twin));
14 page.dirty = false;
15 }
16 }
17 3}

Listing 4 Processing in acquire.

1 void acquire() {

2 release();

3 map<unsigned int, Page&> new_cache;

4 for (auto& [page_id, page] : cache) {

5 if (dir[page_id].writer == my_rank

6 || dir[page_id].writer == NO_WRITER)
7 new_cache[page_id] = page;

8 else

9 mprotect(page.data,PAGESIZE, PROT_NONE);
10 }

11 cache.swap(new_cache);

12 3}

necessary cache invalidation and future fetches. Therefore, by
conveying the knowledge of access pattern changes from the ap-
plication side, we mitigate this disadvantage.

Second, to inspect carefully the objects to be placed on the

Electronic Preprint for Journal of Information Processing Vol.30

Listing 5 Processing in read-miss.

void remote_page_read(
int dst_rank, intptr_t remote_ptr,
int8_t local[PAGESIZE], Pattern pat);

assert(dir[page_id] .home != my_rank);
auto& page = get_page(page_id);
remote_page_read(dir[page_id] .home,
dir[page_id].origin_addr, page.data,

10 Pattern{{®, PAGESIZE}});

11 cache[page_id] = page;

12 mprotect(page.data, PAGESIZE, PROT_READ);

13 3}

1
2
3
4
5 void read_miss(unsigned int page_id) {
6
7
8
9

Listing 6 Processing in write-miss.

1 void write_miss(unsigned int page_id) {

2 if (dir[page_id].home == my_rank) {

3 auto& page = get_page(page_id);

4 mprotect(page.data, PAGESIZE,

5 PROT_READ | PROT_WRITE);

6 } else {

7 if (!cache.contains(page_id))

8 read_miss(page_id);

9 auto& page = cache[page_id];

10 page.dirty = true;

11 memcpy (page.twin, page.data, PAGESIZE);
12 mprotect(page.data, PAGESIZE,

13 PROT_READ | PROT_WRITE);

14 }

15 if (dir[page_id].writer == NO_WRITER) {
16 dir[page_id].writer = my_rank;

17 dir[page_id].global_sync(Q);

18 } else if (dir[page_id].writer != my_rank) {
19 if (dir[page_id].writer != ANY_WRITER) {
20 dir[page_id] .writer = ANY_WRITER;

21 dir[page_id].global_syncQ);

22 }

23 }

24 }

200 A

100 1

50 4

20 1

Average time for release [us]

10 T T T T T T T T T T T T
1 2 4 8 16 32 64 128 256 512 10242048

Length of each continuous segment of diff [byte]

Fig. 2 Relationship between the occurrence pattern of diff and the time re-
quired for sending.

shared regions (Section 4.3). Objects known not to be updated
for a long time are not worth placing on shared regions in prac-
tice. We can reduce fetch and diff sending by privatizing, that
is, releasing such shared objects from the management of PDSM
and copying them into the local memory of each node.

Third, write to the shared region on the node that has the origin
of the cache, called home node (Section 4.4). On home nodes, we

© 2022 Information Processing Society of Japan

Listing 7 Example of the reset API usage.
if (my_rank == 0) {
// initialization
}

argo: :reset_protocol_state();

size_t beg = DIM * my_rank / num_nodes;
size_t end = DIM * (my_rank + 1) / num_nodes;
for (unsigned i = 0; i < NUM_ITERS; i++) {

// main calculation

}

N=R-C RN e Y R S

—_
(=)

Listing 8 Example of privatization.

float *mat = new float[DIM * DIM],
{
ifstream ifs{"input"};
copy_n(istream_iterator<float>{ifs},
DIM * DIM, mat);

3
if (my_rank == 0) {
fill_n(vec, DIM, 1 / sqrt(DIM));

O 0N NN R W N -

10 }

take advantage of the fact that we can write directly to the origin
and reduce the diff sending.

4.2 Reset API

We add a function argo::reset_protocol_state as an API
It has the effect of
sending diffs for all caches and then discarding them, and re-

to reset the cache management state.

setting DirectoryEntry: :writer mentioned in Section 3.2 to
NO_WRITER.

The resulting meaning in the memory model is equal to that of
argo: :barrier described in Section 3.1. The signature is also
the same except for the name, and it is used to replace argo: :
barrier which gets called when the access pattern changes.

Listing 7 shows an example of the use of reset API based on
Listing 1, replacing the argo: :barrier with the reset API at the
timing when the access pattern changes from the initialization
phase where one computing node writes to the entire array to the
iterative calculation phase where all nodes write to each of the
equally divided arrays.

4.3 Privatization

Listing 8 shows an example of privatization to reduce the num-
ber of shared objects in Listing 1. The array mat, which was
placed on the shared region in Listing 1, but did not change dur-
ing the iterations, is relocated to the normal memory region and
initialized on every computing node.

In this way, data that is not to be updated frequently is not hard
to share without PDSM. This can be achieved by prior replication
or use of shared file systems if file input is used, or by calculation
on all nodes, if the results of calculations in the program are to
be stored. The influence of these measures on the critical path of
the program is small, and we expect that the overhead reduction
of ArgoDSM to outweigh it.

Electronic Preprint for Journal of Information Processing Vol.30

Listing 9 Example of the on-home API usage.

1 for (unsigned i = 0; i < NUM_ITERS; i++) {
2 /] ...

3 argo: :barrier();

4 float scale = /* ... %/;

5 float* vec_iter = &vec[0];
6

7

8

9

const float* vec_end = &vec[DIM];
while (vec_iter != vec_end) {
const float* [beg, end] = argo::backend::
subrange_local (vec_iter, vec_end);

10 for (auto idx = beg - vec;

11 idx < end - vec; idx++) {
12 vec[idx] = local[idx] * scale;
13 }

14 }

15 }

As privatization replicates data onto local memory, it gener-
ally takes spatial cost. However, existing studies [3], [5], [16] on
software DSM systems pursuing runtime performance adopted
settings to allocate sufficiently large cache space to accommodate
all shared regions. Under such settings, privatization does not
increase total space usage.

4.4 On-home API

We add template<class T> pair<T*, T*> argo::backend
::subrange_local(T* 1, T* r) asan API to obtain a subrange
of a shared region that satisfies the condition that the node is the
home node. The argument represents an interval [1, r) in an
array of type T[] on the shared region. If there are regions in
this interval that satisfy the condition, the closest one [a, b)
to the beginning of the array is returned as pair{a, b}. If not,
pair{r, r} isreturned.

Listing 9 shows an example of using the on-home API based
on Listing 1. Instead of the even division used in Listing 1, it is
updated based on the division of home nodes.

The same access pattern can be achieved with a simple API
that receives a single pointer, and returns whether it points to the
region where the current node is the home node, but in that case,
the API would have to be called with all the elements of the ar-
ray. Thus, the API that handles intervals makes sense in terms
of cost. The number of iterations is reduced, and the number of
API calls is also reduced. Additionally, the elimination of one
conditional branch from the innermost loop makes compiler op-
timization easier.

5. Evaluation

We experimentally confirmed the following three points:

e As described in Section 4.2, using the reset API reduces the
number of cache fetches, which can shorten the execution
time of the program (Section 5.2.1).

e Asdescribed in Section 4.3, programming of privatizing ap-
propriate shared objects reduces the number of cache fetches
and diff sending, reducing the execution time of the program
(Section 5.2.2).

e Asdescribed in Section 4.4, using the on-home API to make
changes to the shared data on the home node reduces the

© 2022 Information Processing Society of Japan

number of diff sending, which can shorten the execution time
of the program (Section 5.2.3).

5.1 Experimental Setup

We used an extended ArgoDSM based on the publicly avail-
able implementation *> (commit ea4c504) with the changes and
additions to the APIs described in Sections 3.3, 4.2, and 4.4. We
implemented the following two workloads, and measured the to-
tal number of pages subject to fetch and diff sending, and the time
taken for the sum of the main computation and the initialization
of the data used in it.

e CG class B from NAS Parallel Benchmark (NPB)

e Himeno Benchmark class L

For each workload, we created a total of eight different bench-
marks, varying whether or not the three measures under evalua-
tion were performed, and measured them with different numbers
of computing nodes running in parallel. The parallelism within
each node was set to 1. The time taken for sequential execution
without ArgoDSM was also measured to serve as a basis for com-
parison of execution time.

We determined the following three points in the benchmark
implementation on ArgoDSM.

First, division of the processing among the computing nodes.
In the benchmarks using the on-home API, all changes to the
shared data were divided to be made on the home node, and in
the other benchmarks, each loop was statically divided into equal
parts.

Second, which objects were to be managed by PDSM. In the
benchmarks, where we did not privatize the shared objects, after
the division of the process described above, all the objects where
the value written by a computing node could be read by other
nodes were defined as shared objects, while the others were not.
Notably, data that was treated as an array in the original imple-
mentation of the workload was considered on a per-array rather
than per-element basis. In the benchmarks where we privatized
the shared objects, we limited the shared objects to those written
during the main computation phase too, and excluded those writ-
ten only during the initialization phase. For the excluded objects,
the initialization values were calculated on all nodes.

Last, the size of the shared space and the space where the
caches are placed. These were both the same size, and were set
to be the smallest possible size within which all the shared data
could fit (Table 2). The shared space was divided equally by the
number of computing nodes (fractions smaller than the page size
4 kiB were rounded up), and each node became the home node of
one of these.

We used Oakbridge-CX, a supercomputer operated by the In-
formation Technology Center of the University of Tokyo, as the
experimental environment. Its specifications are listed in Table 3.

The ArgoDSM system and benchmarks were compiled using
g++ 7.5.0 with the optimization option -03. Communication be-
tween computing nodes was done using Open MPI 4.0.5.

#2 https://github.com/etascale/argodsm

Electronic Preprint for Journal of Information Processing Vol.30

Table 4 Relationship between the number of fetches Ny, the number of diff sending Ny, and the execution

time At.
Workload Reset Privatized ~ On-home N, max. (avg.) Ny max. (avg.) At [sec]
Himeno 666k (637k) 516k (93k) 143.5
Himeno v 7.5M (584 k) 444k (14k) 228.6
Himeno v 174k (167 k) 99k (81k) 353
Himeno v v 140k (88 k) 64k (2.0k) 10.4
Himeno N 472k (50k) 516k (93k) 122.7
Himeno v v 928k (120k) 444k (14k) 98.9
Himeno v v 64k (15k) 99k (81k) 26.5
Himeno v v v 140k (88 k) 64k (2.0k) 9.8
NPB CG 2.8M (25M) 2.3M (96 k) 204.4
NPB CG v 78M (2.5M) 2.2M (74k) 1762.1
NPB CG v 296k (285k) 27k (24 k) 17.6
NPB CG v N 299k (148k) 39k (3.8k) 18.0
NPB CG v 332k (293 k) 2.3M (96 k) 116.3
NPB CG v v 26 M (824 k) 2.2M (74k) 701.1
NPB CG N N 296k (285k) 27k (24k) 16.9
NPB CG v v v 299k (148k) 3.9k (3.8k) 18.2

Table 2 Size of the shared space requested for ArgoDSM.

Workload ~ w/ Privatization ~ w/o Privatization
Himeno 65,537 pages 459,753 pages
NPB CG 295 pages 47,027 pages

Table 3 Specifications of experimental environment.

CPU Intel® Xeon® Platinum 8280
CPU frequency 2.7GHz

#CPUs (#cores) 2 (28 +28)

Memory 192 GiB

Interconnect Intel® Omni-Path (100 Gbps)

Network Topology Full-bisection Fat Tree

5.2 Experimental Results

Table 4 shows the results of the number of fetches, number of
diff sending, and execution time for all 16 benchmarks in 32-node
runs. Table 5 summarizes the change in performance when each
programming effort is made.

Figure 3 shows the speedup of the parallel execution for
each workload, based on sequential execution without ArgoDSM.
Note that the two missing results in Fig. 3 (b) with 64 computing
nodes are owing to the fact that the programs did not finish af-
ter 30 minutes of execution, thus, it was stopped mid-way before
getting the results.

5.2.1 Reset API

Looking at the impact of using the reset API when moving
from the initialization phase to the computation phase, the per-
formance improved for six of the eight benchmarks, as listed in
Table 5 (a). For the cases where performance improved, a reduc-
tion in the number of fetches was observed. The largest improve-
ment was achieved when the reset API was used on the NPB CG
without privatizing the shared objects and with the on-home API,
the execution speed increased by 2.51 times, and the maximum
number of fetches among all computing nodes reduced by 67%.

In the two privatized cases of NPB CG, no access to the shared
data arose before the computation phase. Therefore, the use of
the reset API increased the number of fetches slightly that, it did
not appear in Table 4, and the execution speed of one of them was
1% slower and the other was 3% faster.

This indicates that the number of fetches can be greatly reduced
and the execution time can be shortened by using the reset API
in-line with the large changes in access patterns between the ini-

© 2022 Information Processing Society of Japan

Table 5 Ratio of speed improvement r by making each programming effort.

(a) Reset API
Workload ~ Privatized ~ On-home r
Himeno 1.17x
Himeno v 2.31x
Himeno v 1.33x
Himeno v v 1.06x
NPB CG 1.76x
NPB CG Vv 2.51x
NPB CG v 1.03x
NPB CG v v 0.99x
(b) Privatization
Workload Reset On-home r
Himeno 4.06x
Himeno v 21.90x
Himeno v 4.63x
Himeno N v 10.02x
NPB CG 11.61x
NPB CG N 97.56x
NPB CG v 6.85x
NPB CG v v 38.46x
(¢) On-home API
Workload Reset Privatized r
Himeno 0.63x
Himeno Vv 3.38x
Himeno v 1.24x
Himeno v N 2.68x
NPB CG 0.12x
NPB CG v 0.97x
NPB CG v 0.17x
NPB CG v v 0.93x

tialization and computation phases. It also shows that even when
the benefits are not obtained, the disadvantages are small.

Because the reset API unconditionally discards the entire
caches, depending on how it is called, fetches that do not occur in
normal barrier synchronization may occur. In our case, the caches
in the node responsible for initialization were destroyed, causing
a fetch on the next access. From the experimental results, we can
say that the limitations of this do not outweigh the benefits in this
setup, but this is not the case for other uses.
5.2.2 Privatization

As summarized in Table 5 (b), the shared object reduction im-
proves the performance in all eight pairs of benchmarks. In all
of them, both the number of fetches and the number of diff send-
ing are reduced. The reduction in the number of fetches ranges
from 74 to 99.8%, comparing the maximum number of fetches

Electronic Preprint for Journal of Information Processing Vol.30

reset/on-home
privatize/on-home
reset/privatize/on-home

—0— (raw) .
2.5 ~¥— reset

—@— privatize

—l— reset/privatize
2.0 A —#— on-home

——

>

0.5 1

Speedup for segential execution without ArgoDSM
(]
L

0.0

T T T T
124 8 16 32 64
Number of nodes

(a) Himeno

2.0

Tee—

\

(raw)

reset

privatize

reset/privatize

on-home

reset/on-home
privatize/on-home
reset/privatize/on-home

1.5 1

1.0

Fthteesd

0.5

Speedup for segential execution without ArgoDSM

0.0

R m—
124 8 16 32 64
Number of nodes

(b) NPB CG

Fig. 3 Speedup of the parallel execution for sequential execution without ArgoDSM.

per computing node; similarly, the reduction in the number of
diff sending ranges from 81 to 99.8%, and the change in execu-
tion speed ranges from 4.06 to 97.56x.

Table 6 lists the numbers of fetches and diff sending in the
initialization phase and the computation phase for the two work-
loads with the use of reset API and no use of on-home API and
with/without privatization.

There are two reasons for extracting these cases. One is that the
effects of privatization and the use of the reset API are not orthog-
onal, as presented in the cases of NBP CG in the previous section.
To examine effects specific to privatization more clearly, it is nec-
essary to compare the results under the use of the reset API. The
other is that benchmarks using the on-home API are not suitable
for comparison because privatization changes the home assign-
ments of the regions of shared objects and consequently changes
computational patterns.

Table 6 indicates that most of the reduction in fetches and diff
sending occurred in the initialization phase under privatization.

As shown from Fig. 3, the speed of multi-node execution even-
tually exceeded that of the original serial execution in seven out of
the eight benchmarks with privatization. The remaining one also
approached the serial performance, as the number of nodes for
parallel execution increased. Contrary, in the eight benchmarks
without privatization, multi-node execution was slower than the
original serial execution.

This shows that privatization reduces the number of fetches and
diff sending, particularly in the initialization phase, which was
less parallelized, and that this allows programs on ArgoDSM to
benefit from the increase in the number of computing nodes in
terms of execution speed, leading to programs on ArgoDSM out-
performing sequential programs.

NPB CG had
poor spatial locality of access to shared regions. Consequently,

Notably, scalability depended on workloads.

the nodes participating in the computation accessed all pages con-
taining (unprivatized) shared objects. It bounded reduction in the
number of fetches. Probably because of it, the parallel perfor-
mance peaked around 16 nodes, as shown in Fig. 3 (b). Contrary,
Himeno had good locality and each node fetched only a portion

© 2022 Information Processing Society of Japan

of pages. The parallel performance improved smoothly up to 64
nodes.
5.2.3 On-home API

As listed in Table 5 (c), the performance improvement is in the
three benchmarks that combine the on-home API and one or more
other measures in Himeno.

In all eight pairs, the use of the on-home API reduces the num-
ber of diff sending. The reduction ranges from 22 to 97% com-
paring the average of 32 nodes. As for the number of fetches, it
decreases in two pairs when comparing the maximum among 32
computing nodes, and in five pairs when comparing the average,
but increases in the other pairs.

Figure 3 (a) shows that in Himeno the two benchmarks that
use the on-home API along with privatization are faster than the
other benchmarks by a large margin as the number of computing
nodes increases. Among these, the one that also uses the reset
API, which is summarized in Table 4 to increase both the maxi-
mum and average number of fetches with the on-home API, was
the fastest of all the benchmarks when run on 64 nodes, running
2.80 times faster than sequential execution without ArgoDSM.
As for the execution speed of NPB CG, Fig. 3 (b) shows that the
benchmark without the on-home API was the fastest among all
the measurements, but when running on 64 nodes, the top two
benchmarks used the on-home APL

The above results confirmed that programming with the on-
home API greatly reduced the diff sending. Although the num-
ber of fetches was not always reduced but sometimes increased, it
greatly improved the execution speed even when it was increased.

From here on, we try to explain as much as possible on how
the impact of using the on-home API varies with workloads and
benchmarks. Notably, in programming with the on-home API,
the computations that each computing node was responsible for
and the data it accessed were determined by how they are as-
signed homes of the shared regions. In this experiment, the home
assignment was as follows. In both workloads, two arrays of
equal size account for the majority of the data that was modified
during the computation phase, and in the privatized benchmarks,
the home nodes of each array were occupied by approximately

Electronic Preprint for Journal of Information Processing Vol.30

Table 6 Change in the number of fetches Ny and the number of diff sending Ny by phase.

Initialization phase

Computation phase

Workload Reset Privatized On-home Ny max. (avg.) Ny max. (avg.) Ny max. (avg.) Ny max. (avg.)
Himeno v 444k (14k) 444k (14k) 38k (36k) 82k (79k)
Himeno v v 63k (2.0k) 63k (2.0k) 13k (13k) 82k (79k)
NPB CG v 42k (1.3k) 2.3M (71k) 302k (291 k) 27k (25k)
NPB CG v v 0(0) 0 (0) 296k (285k) 27k (24k)

half of the computing nodes. In the non-privatized benchmarks,
three nodes were responsible for each, when running Himeno on
32 nodes, and the same single node was responsible for both when
running NPP CG on the same number of nodes.

Based on this, the following explanation can be given for
the experimental results. The change in the average number of
fetches in the 32 nodes depends on which of the following is
larger: the effect of decreasing the number of fetches of the data
being modified, or the effect of increasing the number of fetches,
because the node where the data is modified and the node where
it is read out are more likely to be different than if each loop is
divided equally each time. The maximum value tends to increase
more than the average value because access to the shared objects
is concentrated on some nodes. Notably, we were able to con-
firm that the statement in this paragraph is correct for Himeno,
for which the analysis of access patterns was relatively easy, but
not for NPP CG.

The various changes in execution speed can be explained by
the various combined results of the following factors: the faster
speed owing to the reduction of diff sending, which is the costli-
est of all coherent actions in ArgoDSM, the performance degra-
dation owing to the worse load balancing of computation, and
the increase or decrease in fetches, which has a different direc-
tion of impact for each benchmark. The reason why there was
no performance improvement when using the on-home API in
the benchmarks without privatization in Fig. 3 is that, the compu-
tation and fetches were unevenly distributed among some nodes.
Himeno showed greater improvement than NPB-CG in privatized
benchmarks with use of the on-home API, because Himeno is less
affected by poor load balancing of computation, as it requires less
computation per write to the shared data.

6. Related Work and Discussion

6.1 Partitioned Global Address Space

Partitioned global address space (PGAS) [29] is a type of cost-
aware programming style for distributed shared memory environ-
ments. Its core idea is to distinguish between globally shared
objects and locally stored objects. Privatization (Section 4.3)
and the on-home API (Section 4.4) proposed in this study are
PGAS-like ideas. In particular, the fact that the on-home API is a
function that returns an array interval, rather than a pointer pred-
icate, follows the design of the PGAS languages Chapel [7] and
X10[27].

There are approximately two categories of PGAS. One is
PGAS languages that provide language-level abstraction, with
UPC[28], Chapel [7], and X10 [27] being typical examples. The
other is RMA libraries, which provide one-sided access to remote
memory. MPI-3 RMA [13], OpenSHMEM *3, and UPC++ [30]

3 http://www.openshmem.org/

© 2022 Information Processing Society of Japan

are typical examples, with MPI-3 RMA being the most widely
used API standard. Although PGAS languages provide high-level
abstraction while RMA libraries provide low-level abstraction,
both have in common that they distinguish globally shared ob-
jects from others in operations. Thus, programmers can be aware
of the point at which communication occurs.

To avoid interference with programmers’ awareness, PGAS
runtime systems are basically designed without coherent caches
such as PDSM. Although caches specific to the communication
of each PGAS runtime system have been studied [10], [12], and in
some cases, prefetching to caches is provided as APIs[10], [17].
The reset API proposed in this study (Section 4.2) is an API based
on the ArgoDSM’s coherence protocol and it is not addressed by
existing PGAS systems.

Among the existing PGAS systems, the closest one to the ex-
tended ArgoDSM in this study is UPC. In UPC, pointers to
shared objects are distinguished by a type modifier. However,
access through pointers itself can be done in the same way as
normal pointers. Thus, compared to other PGAS languages such
as Chapel and X10, communication occurs more implicitly in
source codes. This is a property common to PDSM, including
ArgoDSM. Consequently, it also shares with PDSM the disad-
vantage that the cost model is complex and difficult to under-
stand [18]. Further, UPC provides an operator to check whether
the pointer points to an object that the node holds. This is equiv-
alent to the on-home API not adopted in this study, which was
discussed in Section 4.4.

UPC++ is a port of the concept of UPC to the form of a C++
library. Because it is a library, it does not provide language-
level abstractions, but it provides abstractions based on the rich
language features of C++. However UPC++ is not a mere li-
brary implementation of UPC; its design policy is different. In
UPC++, pointers to shared objects are distinguished from ordi-
nary pointers, and access by pointers requires the use of dedi-
cated APIs. Therefore, UPC++ abandons the implicit communi-
cation feature of UPC, and the APIs are designed such that, all
operations related to communication are explicit. Consequently,
UPC++ can achieve higher performance than UPC, because it
can reduce overhead more explicitly, but at the expense of ease of
programming [19].

The extended ArgoDSM proposed in this study can be regarded
as a kind of library implementation of UPC. It differs from
UPC++ in its direction, however, in that, it focuses on realizing
implicit communication without a dedicated compiler through an
implementation technique based on page protection, without sac-
rificing ease of programming.

6.2 Software Distributed Shared Memory
Distributed shared memory (DSM) is the implementation of
shared memory on top of distributed-memory environments, and

Electronic Preprint for Journal of Information Processing Vol.30

particularly those implemented by software are called software
DSM. Software DSM was widely studied in the 1990s [2], [4],
[6], [8], [15], [26], [31], mainly in the fields of architecture and
operating systems, after the appearance of IVY [22], the first im-
plementation. The most widely studied implementation of soft-
ware DSM at that time was page-based DSM (PDSM), which
manages memory based on page protection functionality.

Then, by end of the 90s, PGAS became popular, particularly
in HPC field, and in the 2000s, software DSM research went
downhill. The situation where PGAS is more popular than soft-
ware DSM has continued to the present. However, PGAS is
merely a form of software DSM. Certainly, region-based DSM
libraries [15] are technically difficult to distinguish from RMA li-
braries with caches [5], [12].

Today’s high-performance network devices are equipped with
a feature called RDMA, which bypasses the OS kernel and trans-
fers data with zero-copy. ArgoDSM [16], which is the subject of
this study, is a modern PDSM designed on the premise of RDMA.
However, the coherence protocol at its core is a classical method
proposed in the 1990s [21], [31]. In this sense, ArgoDSM is an
old and new PDSM.

Because ArgoDSM is a simple prototype implementation, it
is easy to add various extensions. Certainly, Anevlavis [3] pre-
pares multiple home assignment policies and compares their per-
formance in a collection of benchmarks ** for HPC that includes
Himeno and NPB CG. However, rather than implementing the
home allocation functionality as an API that can be called at run-
time, ArgoDSM has been extended to specify the policies as run-
time parameters.

There are several PDSM implementation techniques that have
been studied in the past that are worth revisiting, as the case
with the coherence protocol employed by ArgoDSM. For exam-
ple, shifting the home based on the workload [8], using different
coherence protocols with different characteristics [1], and using
different communication methods[14]. The design that allows
users to select consistency models and protocols through APIs
can be seen in Munin [6]. However, designing easy-to-use APIs
for these features and implementing efficient integration is not ob-
vious, and designing APIs based on computational patterns, as in
NanosDSM [9] designed to cooperate with an OpenMP runtime,
will be crucial.

7. Conclusion

In this study, we propose three cost-aware programming mea-
sures on top of the state-of-the-art PDSM system ArgoDSM: in-
forming PDSM of changes in access patterns to shared regions,
inspecting the data to be placed in shared regions, and perform-
ing writes with an awareness of the original owner of the shared
region. We extend ArgoDSM for this purpose. We experimen-
tally confirmed that the proposed measures reduce the number
of coherent actions, significantly improving the situation where
the parallel performance is below the sequential performance,
and make it possible to benefit from speedup from distributed-
memory computers under the high-level abstraction provided by

4 https://github.com/ioanev/argodsm-benchmarks

© 2022 Information Processing Society of Japan

PDSM.

Future work may be directed toward integrating methods that
have been confirmed to be effective in existing studies on PDSM,
by giving them appropriate APIs, as discussed in Section 6. In
particular, we expect that extending the allocation API such that
the home assignment of distributed arrays can be adapted to the
workload would greatly improve the performance by increasing
the utility of the on-home API. Certainly, in preliminary experi-
ments that mimic the ideal home assignment of arrays, we were
able benefit the good locality of Himeno and scale up to 14.4
times the sequential performance on 64 nodes. For problems that
do not scale well, such as NPB CG, it is promising to introduce
an API that can create distributed data structures that leverage the
knowledge of the application side [24]. With such extensions, we
expect that performance comparable to UPC, which is based on a
dedicated compiler, can be achieved in the form of C++ runtime
library.

References

[1] Adve, S.V., Cox, A.L., Dwarkadas, S., Rajamony, R. and Zwaenepoel,
W.: A Comparison of Entry Consistency and Lazy Release Consis-
tency Implementations, Proc. 2nd International Symposium on High-
Performance Computer Architecture, HPCA 96, pp.26-37 (online),
DOI: 10.1109/HPCA.1996.501171 (1996).

[2] Amza, C., Cox, A.L., Dwarkadas, S., Keleher, P.J., Lu, H., Rajamony,
R., Yu, W. and Zwaenepoel, W.: ThreadMarks: Shared Memory Com-
puting on Networks of Workstations, IEEE Computer, Vol.29, No.2,
pp-18-28 (online), DOI: 10.1109/2.485843 (1996).

[3] Anevlavis, I.: A Study of Page-Based Memory Allocation Policies for
the Argo Distributed Shared Memory System, Master’s Thesis, Upp-
sala University, Department of Information Technology (2021).

[4] Bershad, B.N., Zekauskas, M.J. and Sawdon, W.A.: The Midway dis-
tributed shared memory system, Digest of Papers. Compcon Spring,
pp.528-537, IEEE (online), DOI: 10.1109/CMPCON.1993.289730
(1993).

[5] Cai, Q., Guo, W., Zhang, H., Agrawal, D., Chen, G., Ooi, B.C., Tan,
K.-L., Teo, Y.M. and Wang, S.: Efficient Distributed Memory Man-
agement with RDMA and Caching, Proc. VLDB Endowment, Vol.11,
No.11, pp.1604-1617 (online), DOIL: 10.14778/3236187.3236209
(2018).

[6] Carter, J.B., Bennett, J.K. and Zwaenepoel, W.: Implementation and
Performance of Munin, Proc. 13th ACM Symposium on Operating
Systems Principles, SOSP 91, pp.152-164, ACM (online), DOI:
10.1145/121132.121159 (1991).

[71 Chamberlain, B.L.: Chapel, Programming Models for Parallel Com-
puting, Balaji, P. (Ed.), MIT Press, chapter 6, pp.129-159 (2015).

[8] Chung, J., Seong, B.H., Park, K.H. and Park, D.: Moving Home-
Based Lazy Release Consistency for Shared Virtual Memory Systems,
Proc. 1999 International Conference on Parallel Processing, ICPP
’99, pp.282-290, IEEE (online), DOI: 10.1109/ICPP.1999.797414
(1999).

9] Costa, J.J., Cortes, T., Martorell, X., Ayguade, E. and Labarta, J.: Run-
ning OpenMP applications efficiently on an everything-shared SDSM,
Journal of Parallel and Distributed Computing, Vol.66, No.5, pp.647—
658 (online), DOI: 10.1016/.jpdc.2005.06.018 (2006).

[10] Ferguson, M.P. and Buettner, D.: Caching Puts and Gets in a PGAS
Language Runtime, Proc. 2015 9th International Conference on Par-
titioned Global Address Space Programming Models, pp.13-24, IEEE
(online), DOI: 10.1109/PGAS.2015.10 (2015).

[11] Gharachorloo, K., Lenoski, D., Laudon, J., Gibbons, P.B., Gupta,
A. and Hennessy, J.L.: Memory Consistency and Event Ordering in
Scalable Shared-Memory Multiprocessors, Proc. 17th Annual Inter-
national Symposium on Computer Architecture, ISCA 90, pp.15-26,
ACM (online), DOI: 10.1145/325164.325102 (1990).

[12] Girolamo, S.D., Vella, F. and Hoefler, T.: Transparent Caching
for RMA Systems, Proc. 2017 IEEE International Parallel and
Distributed Processing Symposium, pp.1018—1027 (online), DOI:
10.1109/IPDPS.2017.92 (2017).

[13] Hoefler, T., Dinan, J., Thakur, R., Barrett, B., Balaji, P., Gropp, W.
and Underwood, K.: Remote Memory Access Programming in MPI-
3, ACM Trans. Parallel Computing, Vol.2, No.2, pp.9:1-9:26 (online),
DOI: 10.1145/2780584 (2015).

Electronic Preprint for Journal of Information Processing Vol.30

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Tosevich, V. and Schuster, A.: Software Distributed Shared Mem-
ory: A VIA-based implementation and comparison of sequential
consistency with home-based lazy release consistency, Software -
Practice and Experience, Vol.35, No.8, pp.755-786 (online), DOI:
10.1002/spe.656 (2005).

Johnson, K.L., Kaashoek, M.F. and Wallach, D.A.: CRL: High-
Performance All-Software Distributed Shared Memory, Proc. 15th
ACM Symposium on Operating Systems Principles, SOSP 95,
pp-213-226, ACM (online), DOIL: 10.1145/224056.224073 (1995).
Kaxiras, S., Klaftenegger, D., Norgren, M., Ros, A. and Sagonas,
K.: Turning Centralized Coherence and Distributed Critical-Section
Execution on their Head: A New Approach for Scalable Dis-
tributed Shared Memory, Proc. 24th International Symposium on
High-Performance Parallel and Distributed Computing, HPDC ’15,
pp-3-14, ACM (online), DOIL: 10.1145/2749246.2749250 (2015).
Kayraklioglu, E., Ferguson, M.P. and El-Ghazawi, T.: LAPPS:
Locality-Aware Productive Prefetching Support for PGAS, ACM
Trans. Architecture and Code Optimization, Vol.15, No.3, pp.1544—
3566 (online), DOI: 10.1145/3233299 (2018).

Lagravite, J., Langguth, J., Prugger, M., Einkemmer, L., Ha, P.H. and
Cai, X.: Performance Optimization and Modeling of Fine-Grained Ir-
regular Communication in UPC, Scientific Programming, Vol.2019,
No0.6825728, pp.1-20 (online), DOI: 10.1155/2019/6825728 (2019).
Lagravite, J., Langguth, J., Prugger, M., Ha, PH. and Cai, X.: A New-
comer In The PGAS World — UPC++ vs UPC: A Comparative Study
(2021), available from ¢https://arxiv.org/abs/2102.03614).

Loft, J., Griebler, D., Mencagli, G., Araujo, G., Torquati, M.,
Danelutto, M. and Fernandes, L.G.: The NAS Parallel Benchmarks for
evaluating C++ parallel programming frameworks on shared-memory
architectures, Future Generation Computer Systems, Vol.125, pp.743—
757 (online), DOI: 10.1016/j.future.2021.07.021 (2021).

Lebeck, A.R. and Wood, D.A.: Dynamic Self-Invalidation: Reducing
Coherence Overhead in Shared-Memory Multiprocessors, Proc. 22nd
Annual International Symposium on Computer Architecture, ISCA
’95, pp-48-59 (online), DOI: 10.1145/223982.223995 (1995).

Li, K. and Hudak, P.: Memory Coherence in Shared Virtual Memory
Systems, ACM Trans. Computing Systems, Vol.7, No.4, pp.321-359
(online), DOT: 10.1145/75104.75105 (1989).

Nelson, J., Holt, B., Myers, B., Briggs, P., Ceze, L., Kahan, S. and
Oskin, M.: Latency-Tolerant Software Distributed Shared Memory,
Proc. 2015 USENIX Annual Technical Conference, ATC '15, pp.291—
305, USENIX (2015) (online), available from (https://www.usenix.
org/conference/atc15/technical-session/presentation/nelson).

Ruan, Z., Schwarzkopf, M., Aguilera, M.K. and Belay, A.: AIFM:
High-Performance, Application-Integrated Far Memory, Proc. 14th
USENIX Symposium on Operating Systems Design and Implementa-
tion, OSDI "20, pp.315-332, USENIX (2020) (online), available from
(https://www.usenix.org/conference/osdi20/presentation/ruan).
Schuchart, J.K.: Global Task Data Dependencies in the Partitioned
Global Address Space, PhD Thesis, University of Stuttgart (2021).
Stets, R., Dwarkadas, S., Hardavellas, N., Hunt, G.C., Kontothanassis,
L.I., Parthasarathy, S. and Scott, M.L.: Cashmere-2L: Software Coher-
ent Shared Memory on a Clustered Remote-Write Network, Proc. 16th
ACM Symposium on Operating System Principles, SOSP *97, pp.170-
183, ACM (online), DOI: 10.1145/268998.266675 (1997).

Tardieu, O., Herta, B., Cunningham, D., Grove, D., Kambadur, P.,
Saraswat, V.A., Shinnar, A., Takeuchi, M., Vaziri, M. and Zhang, W.:
X10 and APGAS at Petascale, ACM Trans. Parallel Computing, Vol.2,
No.4, pp.25:1-25:32 (online), DOI: 10.1145/2894746 (2016).

UPC Consortium: UPC Language and Library Specifications, v1.3,
Technical Report LBNL-6623E, Lawrence Berkeley National Lab
Tech Report (2013).

Wael, M.D., Marr, S., Fraine, B.D., Cutsem, T.V. and Meuter, W.D.:
Partitioned Global Address Space Languages, ACM Computing Sur-
veys, Vol.47, No.4, pp.62:1-62:27 (online), DOI: 10.1145/2716320
(2015).

Zheng, Y., Kamil, A., Driscoll, M.B., Shan, H. and Yelick, K.:
UPC++: A PGAS Extension for C++, 2014 IEEE 28th Interna-
tional Parallel and Distributed Processing Symposium, IPDPS ’14,
pp-1105-1114, IEEE (online), DOIL: 10.1109/IPDPS.2014.115 (2014).
Zhou, Y., Iftode, L. and Li, K.: Performance Evaluation of Two Home-
Based Lazy Release Consistency Protocols for Shared Virtual Mem-
ory Systems, Proc. 2nd USENIX Symposium on Operating Systems
Design and Implementation, OSDI 96, pp.75-88, USENIX (1996)
(online), available from (https://www.usenix.org/legacy/publications/
library/proceedings/osdi96/zhou.html).

© 2022 Information Processing Society of Japan

Appendix

A.1 Experimental Reproduction of Refer-
ence [16]

NPB CG was also used in the original study [16] of ArgoDSM,
where CG class C on top of ArgoDSM achieved approximately
50-fold performance over serial execution. We conducted an ex-
periment to reproduce that result.

A.1.1 Experimental Setup

We used the publicly available version of ArgoDSM*? (commit
4a7789a) and the publicly available NPB *> (commit 542c92f) for
ArgoDSM. We measured the time taken for the main computation
phase for CG class C problem (from NAS Parallel Benchmark) by
following the built-in setting.

The benchmark program uses intra-node multithreading with
OpenMP and inter-node communication based on ArgoDSM. We
scaled the number of nodes with one thread per node (conforming
to the experiments in Section 5) and 15 threads per node (con-
forming to the experiments in Ref.[16]). As the baselines, we
also measured serial execution without OpenMP and ArgoDSM
and 15-threaded execution without ArgoDSM.

The experimental environment was Oakbride-CX (Table 3) as
in the experiments in Section 5.

We used g++ 7.5.0 to compile both ArgoDSM and the bench-
mark programs with the -03 optimization option, where the
OpenMP version was 201511. We used Open MPI 4.0.5 for inter-
node communication.

A.1.2 Experimental Results

Table A-1 summarizes the execution time with 1-64 nodes and
the relative speed over the corresponding single-node execution.

In the 15-thread-per-node case, the single-node execution was
the fastest and multi-node executions did not scale up speed at
all, which is different from the results of the original study. No-
tably, each node had higher performance than the one used in the
original study, which was equipped with AMD Opteron™ 6220
(3.0-3.6 GHz), which could affect scalability negatively.

Then, in the single-thread-per-node case, multi-node execu-
tions scaled up speed up to 4.53 folds with 16 nodes, which con-
form roughly to the results of the relative speed over single-node
execution reported in the original study. However, the situation
that two-node execution is equivalent to or a little faster than
single-node execution reported therein has not been reproduced.

Lastly, we compare the results with those in Section 5.2. Be-
cause the benchmark program roughly corresponded to the pri-
vatized one of our benchmark program, we compared S ; in Ta-
ble A-1 with the “privatize” plot in Fig. 3 (b). Both became small-
est at two nodes. S| became largest at 16 nodes, while the “priva-
tize” plot became largest at 32 nodes, which were slightly better
than the 16 nodes. The “privatize” plot scaled up to 2.04, which
was less than the maximum of S, 4.56. We attribute this slow-
down to two major factors. One is that S | did not count the initial-

*5 https://github.com/ioanev/npb

Electronic Preprint for Journal of Information Processing Vol.30

Table A-1 Execution time T} in second and relative speed S for k threads
per node. The baseline of S is serial execution without OpenMP
and ArgoDSM; that of S ;s is 15-threaded execution without Ar-
goDSM.

#nodes T15 S 15 T] S]
1 17.15 1.03 21486 1.01

2 25572 0.07 25452 0.85

4 61.36 029 14823 146

8 49.70 0.35 78.84 2.5

16 46.29 0.38 4743 456

32 53.05 0.33 51.33 422

64 11198 0.16 10247 2.11

ization phase, where much communication occurred, but only the
parallell computation phase, while the “privatize” plot counted
both. The other is that S; was for the class C problem, while the
“privatize” plot was for the smaller class B problem. Considering
these factors, we conclude that the difference in speedup between
them fitted in a reasonable range.

A.1.3 Threats to Validity

In this reproduction experiment, we used the publicly available
version of ArgoDSM, and one of the benchmark programs by the
authors’ group of the original study. However, there is still room
for completely reproducing the experiments in the original study.

One major point is that “the prototype implementation” of Ar-
goDSM used in the original study is different from the publicly
available version. For example, the prototype implementation ran
with up to 128 nodes, whereas the published implementation can
run with up to 64 nodes. Based on the answers *® of one of the
authors, “some of the more hardcoded features [of the prototype
implementation] may have changed how some applications run.”
However, the details of the differences between them were un-
clear to even the answering author.

Another major point is that the current implementation of NPB
CG for ArgoDSM can be different from the one used in the
original study. The current implementation was based on NPB-
CPP*’[20], which did not exist at the publication date of Ar-
goDSM. Even if their programs in themselves were almost the
same, their parameter settings would affect the performance sig-
nificantly. The performance differences between this reproduc-
tion and the original study should be attributed to at least pa-
rameters regarding memory alignment and data stored in globally
shared memory. However, even the answering author “cannot re-
member exactly how the applications use their memory and if
alignment matter that much.”*¢

In summary, it is practically difficult to completely reproduce
the experiments in the original study. This reproduction is our
best effort for NPB CG.

*0 Private communication on 2021-12-21

7 https://github.com/GMAP/NPB-CPP

© 2022 Information Processing Society of Japan

Takato Hideshima is a graduate student
in the Graduate School of Information
Science and Technology at the University
of Tokyo. He received his B.E. from the
University of Tokyo in 2021. He is in-
terested in memory management for dis-
tributed computing in C/C++.

Shigeyuki Sato is an Assistant Professor in the Graduate School
of Information Science and Technology at the University of
Tokyo. He received his Ph.D. from the University of Electro-
Communications in 2015. His research interest is in compilers
and parallel programming, especially, automatic parallelization,
program synthesis, high-level optimizations, domain-specific lan-
guages, parallel patterns, and tree/graph processing. He is also a
member of ACM and JSSST.

Kenjiro Taura is a Professor in the De-
partment of Information and Communi-
cation Engineering at the University of
Tokyo. He received his B.S., M.S., and
Ph.D. from the University of Tokyo in
1992, 1994, and 1997, respectively. His
major research interests spread parallel
and distributed computing, system soft-
ware, and programming languages. He is also a member of ACM,
IEEE, and USENIX.

