
Electronic Preprint for Journal of Information Processing Vol.30

Regular Paper

NMT-Based Code Generation for Coding Assistance
with Natural Language

Yuka Akinobu1,†1,a) Teruno Kajiura1 Momoka Obara1 Kimio Kuramitsu2,b)

Received: August 31, 2021, Accepted: January 11, 2022

Abstract: This paper proposes an attempt to realize coding assistance that generates Python code from natural lan-
guage descriptions using neural machine translation. Although coding assistance with deep learning has recently
become a major concern, few applications have used neural machine translation models. One of the major barriers
is the shortage of a parallel corpus of natural language descriptions and source code. To overcome the shortage of
parallel corpora, we propose a method for synthesizing parallel corpora that utilizes the formal nature of programming
languages. We aim to establish a new method using an abstract syntax tree (AST) and a corpus of code fragments.
Using the proposed synthesis method, we successfully constructed tens of thousands of parallel corpora and trained
PyNMT models to generate Python code from Japanese input sentences. The trained PyNMT models successfully
predicted the Python code from user input sentences with an accuracy of 28%. In this study, we propose a synthetic
method for a parallel corpus and summarize the results of the evaluation experiments conducted on PyNMT models.
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1. Introduction

Programming is changing from a specialized skill used in soft-
ware development to an essential skill such as data analysis and
visualization. However, programming is not so simple that any-
one can easily master and use because it requires learning the lan-
guage syntax and many of APIs which the programmer need to
use. Particularly, it is hard for many Japanese speakers who have
difficulty with English to remember English-based API names,
which can lead to a major barrier to programming.

To reduce such barriers, we aimed at realizing coding assis-
tance using a natural language. One of the features of our ap-
proach is the use of a neural machine translation (NMT) to gen-
erate code from natural language descriptions. We believe the
user can intuitively understand the NMT-generated Python code,
because the code is relatively short.

More recently, coding assistance based on deep learning has at-
tracted a significant interest especially among software develop-
ment companies, and various research attempts have been made
and the resulting products have appeared on the market. However,
coding assistance with NMT is rare. The main reason for this is
the absolute lack of a parallel code corpus that serves as the train-
ing data. In machine translation between natural languages such
as Japanese–English translation, tens of millions of parallel cor-
pora have been developed as data resources. However, the paral-
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lel code corpus between a natural language and the source code is
limited; approximately 14,000 in Django (English–Python), less
than 3,000 in CoNaLa (English–Python), and approximately 700
in the Euler corpus (Japanese–Python). With such a small parallel
code corpus, it is difficult to build an NMT model with sufficient
accuracy, even when using the most advanced deep learning tech-
niques.

In this paper, we propose novel back-translation (BT) methods
for synthesizing parallel code corpora that utilize the formal prop-
erties of programming languages to solve the shortage of parallel
code corpora. BT is a technique for generating bilingual transla-
tions by building a translation model that reverses the input and
output of the designated model. The technique is used as a data
augmentation method in machine translation. In this study, two
methods are proposed, i.e., a top-down BT method, which syn-
thesizes Japanese from an AST of the source code, and a bottom-
up BT method, which synthesizes multiple corpora from the cor-
pus of code fragments in expression units. Using these synthetic
methods, we constructed tens of thousands of parallel code cor-
pora and built the PyNMT model to generate appropriate Python
code from Japanese descriptions.

This paper shows the proposed methods for synthesizing par-
allel code corpora and report their experiment results. The re-
mainder of this paper is organized as follows. Section 2 describes
the motivation of our study. Section 3 provides an overview of
the NMT and parallel code corpus. Section 4 describes the top-
down and bottom-up BT approaches. Section 5 describes the ex-
periment evaluation of the PyNMT model trained with parallel
code corpora constructed using the proposed methods. Section 6
reviews related works, and Section 7 provides some concluding
remarks.
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2. Motivation

The concept behind this study is derived from a situation where
many programming beginners are hard to remember API usages
to implement for a particular process. Specifically in data analy-
sis, which requires the use of numerous libraries, such as Pandas
and Matplotlib, search engines are often used to find references
and sample codes. However, such task is tedious and cumber-
some, because it requires considerable time and experience.

To solve this problem, we have envisioned a novel coding as-
sistance system that generates an appropriate source code based
on the intentions described in natural language. Figure 1 illus-
trates the concept of the envisioned coding assistance system.
The key idea is the code translation from natural language into
hard-to-remember code. We expect to provide users with a seam-
less coding experience by incorporating natural language into
their coding assistance.

3. Neural Machine Translation and Code Gen-
eration

The PyNMT model, we have built, is an NMT model that out-
puts Python code from Japanese descriptions. NMT has signifi-
cantly improved the translation accuracy since the advancement
of deep learning technology in the 2010s, particularly with the ad-
vent of the deep learning model, Transformer [1]. In this section,
we provide an overview of NMT and describe the parallel code
corpus, which is an essential factor for determining the accuracy
of the PyNMT model.

3.1 PyNMT
In recent years, NMT, or neural machine translation, is used as

a key mechanism of machine translation apps and has achieved
significant improvements in terms of accuracy in recent years [2].
Figure 2 illustrates the training procedure of the PyNMT model
M. To train the PyNMT model, we need to use an encoder–
decoder model with a parallel code corpus, which pairs the source
sentences X and target sentences Y . Using an encoder–decoder
model, the PyNMT model can learn features between different
languages. When the training of the PyNMT model is completed,
it can predict the translated sentence Y ′ from the unknown source
sentence X′ that requires to be translated.

3.2 Transformer
Transformer is an encoder–decoder model proposed in 2017.

It has succeeded in reflecting the dependencies between words
more accurately and rapidly by effectively using different types of
attention mechanisms. As a result, Transformer has achieved nu-
merous SoTAs in natural language processing tasks such as ma-
chine translation and has contributed to the creation of many new
language models [3], [4].

Figure 3 shows the architecture of Transformer. Transformer
applies word embedding using a positional encoding layer in ad-
dition to the standard encoding layer to handle the order of the
input strings without the use of CNNs or RNNs. Using the
vector representation obtained, Transformer probabilistically pre-
dicts the next token that is most likely to occur.

Fig. 1 Proposed concept of coding assistance system.

Fig. 2 Training procedure of PyNMT model.

Fig. 3 Model architecture of Transformer.

3.3 Parallel Code Corpus
To build a more accurate translation model, a large parallel

corpus is required in addition to a high-accuracy deep learning
model, such as Transformer. However, the data resources of the
parallel code corpus between a natural language and source code
are insufficient compared to the parallel corpus between natu-
ral languages. The numbers of existing data resources for the
parallel code corpus, such as Django (English–Python), CoNaLa
(English–Python), and Euler corpus (Japanese–Python), are ap-
proximately 14,000, 3,000, and 700, respectively.

To overcome the shortage of parallel code corpora, several
methods have been proposed, such as extracting comments and
docstrings from the source code as bilingual text and extracting
natural language descriptions from community sites such as Stack
Overflow [5], [6]. However, these methods still have issues re-
garding the quality of the parallel code corpus, such as the risk
of noise being included during the extraction. In addition, these
methods use source code and natural language descriptions writ-
ten by a third party, which may contain bugs in the source code
and lead to different levels of abstraction in the expressions.
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In recent years, benchmark datasets have been released to im-
prove the deep learning models, such as CodeXGLUE [7], which
collects the source code and comments from open sources. How-
ever, our goal is not to propose an improved deep learning model,
but to create the coding assistance described in Section 2, which
is our motivation for describing only the parts of the source code
that cannot be remembered in natural language, and to convert
those parts into the appropriate code. Therefore, we emphasize
the importance of a parallel code corpus consistent with this mo-
tivation and avoid the use of CodeXGLUE.

4. Methods for Synthesizing the Parallel Code
Corpus

We propose two methods for synthesizing a parallel code cor-
pus based on back-translation (BT), a technique for generating
bilingual translations by building a translation model that reverses
the input and output of the designated model [8], [9], [10]. Our
BT methods use the formal nature of the programming language
and synthesize a bilingual translation based on the traditional
compiler construction method instead of the BT model. In this
section, we provide an overview of these two synthesis methods.

4.1 Top-Down Back-Translation
Top-down BT (TBT) is a BT method based on the classical

compiler construction method. Figure 4 illustrates the concept
of the TBT. First, the Python code is converted into an AST
based on syntactic parsing. Next, an AST is applied with pre-
defined transformation rules (BT rules) in a top-down manner,
and a pseudo-code in a natural language is generated. Finally, it
is converted into a natural language description by adjusting the
conjunctions.

The BT rules are given as a translation of the code correspond-
ing to the node units of the AST as follows:

if x : もし xのとき
(If x, then)

x % y xを yで割った余り
(The remainder of x divided by y)

x == y xが yに等しいかどうか
(Whether x is equal to y)

The input source code is parsed into the AST, and the BT rules
are applied in a top-down manner. At this point, BT rules are
defined uniformly to always end with a noun, and thus when the
final conjunction is adjusted, it can be connected as a Japanese
sentence.

Synthesis Example (1)

x % 2 == 0 xを 2で割った余りが 0に等しい
かどうか
(Whether the remainder of x divided
by 2 is equal to 0)

Synthesis Example (2)

if x % 2 == 0: もし xを 2で割った余りが 0に等
しいとき
(If the remainder of x divided by 2
is equal to 0, then)

Fig. 4 Top-down back-translation.

Fig. 5 Bottom-up back-translation.

As the most significant advantage of TBT, it enables the con-
struction of a parallel code corpus from a large amount of source
code on the web, such as GitHub. However, TBT always outputs
the same natural language description because the same BT rules
are always applied when converting the code. Furthermore, TBT
has a disadvantage in that, as the input code becomes longer, it re-
sults in unnatural sentences that people would not usually write,
even if they are not grammatically incorrect.

4.2 Bottom-Up Back-Translation
Bottom-up BT (BBT) is a BT method that synthesizes bilin-

gual translations in a bottom-up approach. Figure 5 illustrates
the concept of BBT.

In the BBT, we first manually prepare a parallel code corpus
with multiple Japanese translations.

x % n

xを nで割った余り
(The remainder of x divided by n)

x % 2 == 0

xが偶数かどうか
(Whether x is an even number)
xは 2で割り切れるかどうか
(Whether x is divisible by 2)

Unlike TBT, BBT provides bilingual translations to code frag-
ments in expression units of arbitrary length, rather than in units
of AST nodes. In this manner, we can obtain a more natural par-
allel code corpus.

Compared with natural languages, programming languages
have only a limited variety of lexical patterns before and after an
expression unit. Therefore, we assign lexical patterns that may
appear before and after a prepared code fragment as @not anno-
tation.

These annotations generate a parallel code corpus, as shown in
Table 1. Thus, BBT synthesizes the parallel code corpus from a
manually given code fragment in an expression unit in a bottom-
up manner. However, the BBT does not synthesize the code at
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Table 1 Example of extended logical expression.

Python code NL description
x % y == 0 xを yで割った余りが 0かどうか

(Whether the remainder of x divided by y is zero)
@not not x % y == 0 xを yで割った余りが 0でないかどうか

(Whether the remainder of x divided by y is non-zero)
@if if x % y == 0: もし xを yで割った余りが 0ならば

(If the remainder of x divided by y is zero, then)
@not @if if not x % y == 0: もし xを yで割った余りが 0でないならば

(If the remainder of x divided by y is non-zero, then)

Fig. 6 Example of DA rule description.

the top of the tree structure. This is based on the analysis that the
Transformer language model is a probabilistic model with lexical
sequences and is significantly affected by the occurrence of the
most recent lexical sequence.

In addition, we introduce a data augmentation (DA) notation
to facilitate the definition of various natural language representa-
tions in the BBT.
• Synonym

[表|データフレーム]

⎧
⎪⎪⎨
⎪⎪⎩

表 (Table)
データフレーム (Dataframe)

• Word order reordering

Aを/Bにする

⎧
⎪⎪⎨
⎪⎪⎩

Aを Bにする (Assign A to B)
Bを Aにする (Assign B to A)

• Prefix/Suffix

s(文字列)

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

文字列 s (String s)
s
s文字列 (s string)

The BBT can output an extended parallel code corpus by writ-
ing a few DA rules, as shown in Fig. 6.

5. Experiment Evaluation

We conducted experiments to determine the type of PyNMT
model that can be built using the parallel code corpus constructed
by the TBT and BBT. In this section, we summarize the experi-
ments and their results.

5.1 Experiment Dataset
We prepared five different experiment datasets. Table 2 sum-

marizes the construction method and the number of datasets of
the parallel code corpus. Euler *1 is a dataset of the Python code
used for solving the “Project Euler4” problem with manually an-
notated translations [11]. AOJ-T and AOJ-B are datasets con-
structed by collecting all Python code submitted to Aizu Online
Judge *2 by the top-100 highest scorers and applying TBT and
BBT, respectively. Aizu Online Judge is different from the source
code released on GitHub in that it has specific restrictions on the
use of the library. Therefore, we can regard AOJ-T and AOJ-B as

*1 ahcweb01.naist.jp/pseudogen/
*2 judge.u-aizu.ac.jp/

Table 2 Construction method and number of datasets of the parallel code
corpus.

Construction method Number of datasets Number of datasets
(After removing duplicates)

Euler Annotation 722 302
AOJ-T TBT 250,673 27,684
AOJ-B BBT 1,367 1,347

DS Annotation 275 256
DS-B BBT 20,407 20,175

corpora of basic Python grammar and libraries. AOJ-T was con-
structed by applying TBT based on BT rules used to the collected
Python code, and AOJ-B was constructed by adding DA rules to
the BT rules.

DS is a dataset created by extracting APIs of commonly em-
ployed libraries for data analysis, such as Pandas and Matplotlib,
from textbooks on data science and manually annotating them.
DS-B is a dataset augmented by applying BBT to the DS. We
confirmed that the number of datasets can be increased by a fac-
tor of 74 by applying the two DA rules proposed in the previous
section. Although it takes time to write DA rules, the cost is min-
imal. This increase in the number of datasets also contributes to
the improvement of the correct ratio, as will be shown in Sec-
tion 5.3.

5.2 Building Training Models
We built PyNMT models with five datasets divided into two

parts, the training data and validation data, at a ratio of 7 : 3.
First, we preprocessed the datasets using a lexical analysis.

We used Janome on the Japanese side and inserted spaces before
and after the operators, parentheses, and quotation marks on the
Python code side. In general preprocessing, we need to clean the
datasets before conducting a lexical analysis; however, there is
no need to clean the corpus synthesized by our proposed method
because it does not contain noise such as that generated when
extracting data from the web.

After a lexical analysis, we replaced the variable names and
literals with special tokens, such as <A>. An example of this re-
placement is as follows.

Before replacement

Python : mylist.append(’12345’)

Japanese : mylist に ’12345’ を追加する
(Append ’12345’ to mylist)

After replacement

Python : <A>.append(<B>)

Japanese : <A> に <B> を追加する
(Append <B> to <A>)

With this replacement, the meanings of the variable names
are no longer reflected during training; by contrast, the PyNMT
model can replace variable names mechanically during a predic-
tion. This replacement results in duplicates in the datasets, and
we therefore removed these duplicates. The right side of Table 2
shows the number of datasets after the duplicate removal.

For training, we used Transformer implemented with PyTorch,
applying the following parameters: 3 encoder and decoder layers,
8 heads, a batch size of 128, and 512 word embedding dimensions
and hidden layer dimensions. We used cross-entropy as the loss
function and Adam as the optimizer. The number of epochs in
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Table 4 Experiment results (1): Example of prediction results.

Input Correct code Predicted code Correction
Euler <A>の末尾に <B>を追加 <A> . append ( <B> ) <A> <unk> <unk> <unk> <unk> <B> <unk> ×

(Append <B> to the end of <A>)
AOJ-T <A>に<B>を掛けた値を<C>で割った値の浮動小数点数を出力

する
print(float(<A> * <B> /

<C>))

print(float(<A> * <B> / <C>)) �

(Output the floating point number of <A> multiplied by <B> and
divided by <C>)
入力された文字列を<B>で分割した字句列の各要素に整数を
適用した列のリストを<A>とする

<A> = list(map(int,

input().split(<B>)))

input = list(map(int,

input().split(<B>)))

×

(Assign a list of sequences in which the input string is divided
by <B> and an integer is applied to each element of the lexical
sequence to <A>)

AOJ-B 入力を半角スペースごとに整数としてリストで受け取り，
<A>に代入する

<A> = list(map(int,

input().split()))

<A> = list(map(int, input().split())) �

(Receive input as a list of integers per space and assign to <A>)
数列<A>の平均 sum(<A>) / len(<A>) len(<A>) / len(<A>) ×
(Average of sequence <A>)

DS <A>の行数・列数を確認 <A>.shape <A>.shape �
(Check the number of rows and columns in <A>)
重複している行を<A>から削除する <A>.drop duplicates() from <A>.drop duplicates() ×
(Remove duplicate lines from <A>)

DS-B データフレーム<A>の中の重複した行をドロップして，置き
換える

<A> = <A>.drop duplicates() <A>.drop duplicates(inplace=True) �

(Drop duplicate rows in dataframe <A> and replace them)
データフレーム<A>中にある<B>を未記入の値とする <A>.replace(<B>, np.nan) replace <A>.replace(<B>, np.nan) ×
(Change <B> in dataframe <A> into an unfilled value)

the PyNMT model was set to terminate when the loss value of
the validation data was minimized.

5.3 Experiment Result (1)
We evaluated the PyNMT model by preparing the test data us-

ing the holdout method to determine the type of Python code
predicted. The test data were 1 : 1 split of the validation data.
Herein, we present a quantitative evaluation based on two mea-
sures and a qualitative evaluation based on excerpts of the predic-
tion results.

Table 3 summarizes the quantitative evaluation results. The
correctness ratio is the ratio of the syntactically and interpreta-
tively correct code predicted from the PyNMT model to the test
data. When the number of test data was large, we conducted a
statistical analysis through sampling. BLEU is a commonly used
evaluation measure in machine translation that compares the pre-
dicted and correct sentences of a translation model and evaluates
the translation accuracy based on the n-gram match ratio [12].
The score is 100 if the predicted sentence and the correct sen-
tence are completely identical, and 0 if no match is found at all.
We suppose that BLEU can be an indicator for programming lan-
guages that require strict grammatical descriptions because it can
compare the correct code with the predicted code at the lexical
level. However, because it cannot consider the syntax and inter-
pretation, we calculated it as a reference value in this study.

As shown in the AOJ-T, AOJ-B, and DS-B experiments, the
use of the synthetic method of the parallel code corpus proposed
in this study shows a high correctness ratio. In particular, the
parallel code corpus constructed using the BBT showed a higher
correctness ratio.

Next, as a qualitative evaluation, we reviewed excerpts of the
prediction results. Table 4 summarizes the input sentences, cor-
rect code, predicted code, and correctness. Euler could not obtain
the complete Python code because it output many special tokens
<unk>, which indicates unknown words. Comparing AOJ-T and
AOJ-B, AOJ-T shows that the input sentences of the test data are
redundant. By contrast, AOJ-B has relatively natural Japanese

Table 3 Experiment results (1): Correctness ratio and BLEU of the pre-
dicted code.

Correctness ratio BLEU
Euler 0.00% 5.63

AOJ-T 19.33% 75.54
AOJ-B 48.67% 78.84

DS 7.69% 31.80
DS-B 58.67% 69.76

sentences, although owing to its naturalness, we can see some
cases in which the translation was incorrect because of a poor
mapping with the tokens. Next, we compared DS and DS-B. DS
often predicted unnecessary tokens at the beginning of the code,
and most of the predicted code was incorrect, although it was
not as poor as Euler’s result. By contrast, DS-B predicted more
correct code than DS. The predicted code shown as an example
of the correct answer for DS-B is incorrect when compared only
literally; however, we regard it as the correct code because the
interpretation of a reassignment and inplace=True is the same.

5.4 Experiment Result (2)
As mentioned in the motivation section, our goal was to create

a coding assistance system that converts the user’s natural lan-
guage input into Python code. Thus, we used sentences close to
the user input as test data to evaluate whether the PyNMT model
can predict the correct code when applied to a coding assistance
system. We focused on the two models trained with AOJ-T and
AOJ-B and compared two underlying synthesis methods. We did
not construct DS-T, the corpus applying the top-down BT method
to DS, because we did not have a source to obtain a large amount
of Python code for applying TBT, and we could not cover all
APIs; therefore, we compared only AOJ.

We used the correct answer rate of the prediction code through
a manual evaluation and BLEU as evaluation indicators and cal-
culated them using 150 cases of the same test data. As mentioned
previously, we included BLEU as a reference value.

Table 5 summarizes the results of the quantitative evaluation.
Comparing AOJ-T and AOJ-B, we can see that AOJ-B obtains a
higher correctness ratio. However, unlike experiment result (1),
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Table 6 Experiment results (2): Example of prediction results.

Input Correct code Predicted code (AOJ-T) Correction (AOJ-T) Predicted code (AOJ-B) Correction (AOJ-B)
<A>の切り捨て math.floor(<A>) math.floor(<A>) � math.floor(<A>) �
(Truncation of <A>)
<A>が<B>よりも小さくなかったならば if not <A> < <B> : assert <A> < <B> × if not <A> < <B> : �
(If <A> is not smaller than <B>, then)
<A>が<B>で割り切れないか <A> % <B> != 0 != <A>.not <B>: × while <A> % <B> != 0 ×
(Whether <A> is divisible by <B>)

Table 5 Experiment results (2): Correctness ratio and BLEU of the pre-
dicted code.

Correctness ratio BLEU
AOJ-T 5.33% 24.99
AOJ-B 28.00% 66.97

the correctness ratio of AOJ-T was 5.33%, which is a very small
value.

Next, we qualitatively evaluated what types of predicted code
was predicted. Table 6 shows the predicted code and its correct-
ness for each input sentence because we evaluated both AOJ-T
and AOJ-B with the same test data. We can confirm that the pre-
dicted code of AOJ-T is significantly different from the correct
code.

5.5 Findings and Perspectives
The synthesis of the parallel code corpus using TBT and BBT

resulted in a higher correctness ratio than the small parallel code
corpus constructed manually. TBT achieved the largest paral-
lel code corpus, although the correctness ratio was higher for
the PyNMT model trained with the corpus synthesized using
BBT. One of the reasons why the correctness ratio decreased
particularly for the user’s input sentences is the unnaturalness
of Japanese sentences when synthesized using TBT. TBT syn-
thesizes Japanese sentences in a top-down manner, based on
BT rules, resulting in mechanical and unnatural representations.
However, BBT is based on manually defined translations, and
thus it can predict the correct code for user-input sentences with
a 28% correctness ratio. However, to use the PyNMT model for
practical coding assistance, we must improve the correctness ra-
tio.

6. Related Work

Code generation is a research area that has attracted significant
interest in the software engineering field. Code generation gen-
erally refers to the task of transforming a natural language into a
structural representation, such as a programming language or an
AST. Improvements in the accuracy of the code generation will
lead to new paradigms for no-code systems [13] that allow coding
without memorizing programming languages’ grammar rules.

Most previous studies on code generation have been based on a
semantic analysis [14], which is an analysis technique of natural
language processing. However, inspired by the recent develop-
ment of deep learning technology and the expansion of its ap-
plication range, researchers have proposed numerous approaches
to applying deep learning technologies. This section provides an
overview of recent studies on code generation in two major cate-
gories.

6.1 Semantic Analysis with Encoder–Decoder Model
The encoder–decoder model is a deep-learning model that

transforms from one series length to another. One model,
Seq2seq, was proposed in 2014 [15], [16] and has attracted sig-
nificant attention in recent years. Transformer and Seq2seq have
been used in a wide range of areas in natural language process-
ing and have improved the accuracy of machine translation and
question-answering systems.

In the field of software engineering, many attempts have been
made to apply these models to tasks such as code generation and
summarization. However, to apply the encoder–decoder model
used in natural language processing to the source code, we face
several problems arising from the difference in the nature of for-
mal and natural languages. First, the output result of the encoder–
decoder model is not formally guaranteed. To solve this problem,
some studies have replaced the output text not with the code itself
but with something structural such as a path representation of the
AST [17]. Outputting the path leads to a solution that avoids sit-
uations in which the output code cannot be executed. Second, a
simple encoder–decoder model cannot properly capture the struc-
tural information or context of a formal language. To address this
problem, some studies have incorporated grammatical rules, tree
structures, and contextual information into the model to effec-
tively learn the code [18], [19].

6.2 Applying Source Code to Large-Scale Language Models
In recent years, many large-scale language models based on

Transformer have been proposed in the natural language process-
ing field and have been applied to source code [20], [21]. One
technology that has surprised many engineers is GitHub’s Copi-
lot [22], which uses the GPT-3-based language model Codex.
Codex enables the generation of function-by-function code by
simply typing instructions to be executed [23].

It has also been applied to T5, which is a model that can re-
alize multiple tasks simultaneously in a single model by solving
all tasks in various natural language processing fields in a text-
to-text format [24], as well as to GPT-2 and GPT-3. In the field
of software engineering, T5 has been used to construct models
that support multiple tasks related to coding [25] and models that
generate different output units of source code from different input
units of natural language [26].

The lack of training data is a major challenge in applying deep
learning techniques. As a result, augmentation of training data
has been a topic of growing interest in the natural language pro-
cessing field, and several methods have been proposed, such as
randomly replacing low-frequency words with other words [27],
formulating the augmentation method as an optimization prob-
lem [28], and back-translation [8]. However, to our knowledge,
no approach has been proposed to apply data augmentation to
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translation models for code generation. Our proposal differs from
conventional data augmentation methods for natural languages in
that it attempts to utilize the nature of source code, which is for-
mal and can be transformed into syntax trees.

7. Conclusion

In this paper, we proposed two methods for synthesizing par-
allel code corpora, top-down BT and bottom-up BT, to overcome
the problem of the shortage of parallel code corpora. We con-
firmed that these synthesis methods can be used to construct a
more parallel code corpus than the existing one and build PyNMT
models with a high correctness ratio. In particular, the PyNMT
model trained using the parallel code corpus constructed through
BBT can generate relatively correct code even from natural lan-
guage expressions written by users. Therefore, we believe that
BBT will become a core technology for achieving our goal of
coding assistance with natural languages.

Future studies will involve improving the proposed method
based on BBT to construct parallel code corpora containing ex-
pressions that are closer to the input sentences of the users. In
addition, we would like to construct parallel code corpora more
efficiently by incorporating various methods across disciplines,
such as syntactic analysis techniques in language processing and
distributed representations in natural language processing.
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