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Abstract: The demand for safety-enhancing solutions is on the rise, especially due to COVID-19’s rapid spread. In
order to track infected cases and hence restrict the spread of the virus, real-time life-logging is an essential application.
This application highlights the necessity for a precise human identification technique in situations when cameras are
not feasible owing to privacy concerns. The potential of the LiDAR sensor to represent the surrounding world in the
form of a 3D point cloud has recently gained interest. In this paper, we present a new wearable device with a small-
sized LiDAR that may be used to create an onboard human identification system for life-logging. Our proposed system
starts with clustering to remove noise and background. Then fisher features are extracted from them. After that, the
collected characteristics are utilized to train classifiers to identify the subjects. We conducted two different experiments
to evaluate the suggested system. We collected six and thirteen subjects for each experiment. The results show that
the proposed system can effectively remove noise and accurately identify subjects with at least 95% accuracy in both
experiments.
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1. Introduction
In order to control the spread of COVID-19 by identifying in-

fected patients and maintaining social distance, research institutes
and industry are working on the development of new technologies
that integrate human identification techniques with location infor-
mation [1]. These technologies are also intended to provide use-
ful information that aids in understanding the virus’s transmission
as well as individual actions to prevent the spread of infection
via life-logging systems. Furthermore, in public closed places
such as kinder gardens, schools, and universities, this technology
is essential. Despite the popularity of proximity-based solutions
such as Bluetooth, they are heavily dependent on the availability
of Bluetooth-enabled cellphones, which are not always readily
available, particularly in educational institutions. As an alterna-
tive, many studies have been conducted based on cutting-edge
technology in human identification using biometric data such as
the face [2] and voice [3]. Face recognition based on infrastruc-
ture cameras have been done using computer vision techniques.
Due to the limited coverage of fixed cameras, this area of research
limits the practicality of an aiming system. Voice-based person
identification using the smartphone’s internal microphone. How-
ever, this requires the user’s speech to be recorded for identifi-
cation, which may contain sensitive or private information. Un-
surprisingly, the use of cameras or microphones in all locations,
such as restrooms, has resulted in a lot of privacy concerns.

Using eye-safe lasers (class 1A, near-infrared spectrum), Light
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Fig. 1 The typical situation of our system usage

Detection and Ranging can identify nearby objects and compute
distances to target objects with sub-decimeter errors. It is used for
security monitoring, people counting, tracking in public space,
path planning, marketing, and other applications in big indoor lo-
cations such as malls, museums, and government buildings. 3D
point cloud data of 3D dimensional coordinates points captured
by LiDARs does not contain any personal information.

As illustrated in Fig. 1, we present a system for enabling per-
son identification with an inexpensive wearable LiDAR in this pa-
per. We offer the first small-sized LiDAR system capable of scan-
ning and representing the surrounding environment in a privacy-
preserving way. This representation can be used to identify the
user who is contacting the sensor user without revealing any sen-
sitive data like RGB images or voices. The suggested method, in
particular, creates a signature database that can be used to iden-
tify the individuals. These signatures are derived using a compu-
tationally efficient fisher vector representation from each user’s
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point cloud representations. Then, to classify the user in ques-
tion, a random forest classifier is trained.

Nonetheless, the proposed approach must prepare for a vari-
ety of obstacles of the point cloud. To begin with, unlike visual
images, collecting meaningful context is a difficult task due to
its unordered, unstructured, and variable size nature. Second, the
proposed small-size LiDAR has restricted sensing performance
in terms of range and noise. Finally, it is necessary to take into
account the edge device’s limited computational power. To ad-
dress these challenges, we present a number of novel modules,
including noise detection and removal over cascaded point cloud
frames utilizing spatial-temporal density-based clustering. The
fisher vector approach is used to extract fixed-size features by
taking advantage of symmetric functions. After that, the collected
features are used to build a computationally efficient classifier for
person recognition.

In our lab, the proposed approach was tested on six and thir-
teen different subjects of students and employees. According to
the results, the proposed method achieved a human identification
accuracy of 92%. We also demonstrate the effectiveness of noise
removal and processing time when numerous consecutive frames
are taken into account. These findings establish the suggested
system as a cutting-edge human identification system based on
the point cloud.

This is how the rest of the paper is organized. In Section 2,
we do a literature review. We give an overview of the proposed
system in Section 3, and we go into details in Section 4. We dis-
cuss the data gathering procedure and how the system is tested in
Section 5. Finally, in Section 6, we conclude the paper.

2. Related Work
The most relevant literature to the proposed system is discussed

in this section.

2.1 Human Identification
Many studies for human-centric applications have been pro-

posed, such as tracking [4–14] or identification [2, 3, 15]. The
epidemic drew a lot of attention to human identification depend-
ing on a variety of human signatures. For example, face recog-
nition [2], gait recognition [15], and voice recognition [3] can be
used to identify humans. Face and voice recognition have demon-
strated superior subject discrimination abilities. However, these
strategies frequently raise privacy concerns, which make them
difficult to implement in practice.

Face recognition systems began with the Eigenface [16] tech-
nique, which uses specific distribution assumptions to generate
a lower-dimensional representation. However, this method fails
to treat uncontrollable facial changes that deviate from their pre-
conceived notions. Learning-based local descriptors were pro-
posed [17, 18], but they couldn’t guarantee robustness against fa-
cial changes. After AlexNet [19], which obtained the top ac-
curacy in the ImageNet competition at the time, deep learning
approaches became popular. On the LFW benchmark in 2014,
DeepFace [20] achieved 97.35% accuracy, which is very similar
to human performance (97.53%). Many academics then turned
their attention to deep learning, which has so far attained state-

of-the-art performance with an accuracy of up to 99.80%.
Many industries, such as computer vision, are interested in

gait-based human recognition. This is accomplished by extract-
ing features from the subject’s body while a subject is moving.
The system in [21] achieves this by using 3D convolutional neu-
ral networks to learn the gait from various viewing angles. A
temporal-based graph LSTM network is used to learn a person’s
bones and joint attributes [22]. However, there are a number of
difficulties with this area of research, including the variety of gait
patterns and the difficulty of recognizing people in busy places.

Many strategies [23, 24] have been presented for hu-
man(speaker) recognition by speech, exploiting the strong capa-
bility of deep learning. The system in [23], for example, of-
fered the concept of d-vector to improve the speaker’s recogni-
tion. This is accomplished by training a model to extract features
from which the d-vector can be computed, allowing for speaker
recognition.

In contrast to vision-based or auditory approaches, the sug-
gested system relies on a 3D point cloud to protect users’ privacy.
This is ideal for many situations when privacy is required, such
as fitting rooms in stores..

2.2 Point cloud-based learning
LiDAR-based (i.e. 3D point cloud-based) applications have

been increasingly popular in recent years in a variety of fields,
including autonomous driving, archaeology, agriculture, and so
on. LiDAR is used in autonomous driving to detect objects
such as pedestrians and other vehicles. On top of cars, a high-
quality LiDAR with a wide range and 360-degree angles scans
the surrounding information, allowing for a deeper understand-
ing of the surroundings. There are two ways for object detec-
tion. i.e., approaches based on region proposals and single-shot
methods. Methods based on region proposals construct many re-
gions containing objects, then extract features from each region to
identify which class the objects belong to. These approaches can
be implemented in three ways: Multiview-based, Segmentation-
based, and Frustum-based. MultiView-based methods combine
features from various view maps, such as a 2D image and a
bird’s eye view, for each proposal. Segmentation-based methods
[25–27] divide points into foreground and background points us-
ing semantic segmentation techniques. After that, background
points are deleted to reduce processing time, and only high-
quality proposals for foreground points are generated. Frustum-
based approaches [28] propose 2D candidate regions of objects
using 2D object detectors and generate a 3D frustum proposal for
each 2D candidate region. It’s great for making suggestions on
possible object locations.

Single-shot approaches [29] employ a single-stage network to
predict class probabilities and produce 3D bounding boxes for
objects. Because they don’t have a step for region proposal, their
processing speed is faster than region proposal-based approaches.

Deep learning-based approaches can be divided into two cate-
gories: indirect and direct [30]. In direct ways, point clouds are
turned into regular structures such as multi-views [31] and voxel
grids [32]. On the other hand, direct methods take advantage of
raw point clouds. e.g., PointNet [33] uses raw point clouds as in-
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Fig. 2 System flow over the different modules.

(a) The small size LiDAR used
at the core of the proposed sys-
tem.

(b) Sensor and compute mod-
ule.

Fig. 3 Devices of Hitonavi-µ.

puts for classification and segmentation and covers the common
difficulties of point clouds. All of these solutions are demanding a
lot of computing power, which makes them difficult to implement
on edge devices.

Unlike other methodologies, this is the first work to consider
the human identification-based 3D point cloud of LiDAR device.
Furthermore, the suggested system is designed to be computa-
tionally efficient, making it suitable for use as an edge device on
wearable LiRAR.

3. System Overview
The proposed system includes two stages: the sensing stage

and the learning stage. The design of a completely new small
LiDAR, which we call Hitonavi-µ, is required for the sensing
step. The sensor is designed to be worn as a necklace (around the
user’s neck) and produces 3D point clouds for the environment.
We gather point cloud data for several subjects while standing
and walking. The learning stage’s goal is to extract key charac-
teristics (signatures) for each subject. The first step in this stage
is to gather point cloud data for each subject, from which a sig-
nature database will be created. Then, we design a noise and
background removal module using the Density-based clustering
algorithm. This is accomplished by combining many successive
scans to increase the point density, allowing for improved detec-
tion of forms, objects, and noise. Following that, discriminative
features are recovered from the noise-free point cloud scans using
the Fisher feature representation. The signature database for all
subjects is the output of this stage. Finally, the Fisher feature is
fed into a classifier to train.

4. The System Details
In this section, the sensing and data gathering step, as well as

the learning stage, are described in detail. The system architec-
ture is shown in Fig. 2.

4.1 The Sensor stage
The properties of Hitonavi-µ sensor are described in this sec-

tion. Hitonavi-µ is a miniature version of Light Detection and
Ranging (LiDAR) with a battery and computing unit. LiDAR is
a type of remote sensing technology that measures the distance
between objects’ surfaces. It calculates the distance by mea-
suring the time it takes a laser pulse to travel from the sensor
to the surrounding objects/surfaces and back. As a result, it is
widely employed in a variety of applications, including detecting
the presence of obstacles in autonomous vehicles [30] and in-
door navigation for monitoring humans and robots [34]. All of
these applications are based on large-scale LiDAR sensors with
advanced sensing capabilities. As a result, its price is expensive,
preventing widespread deployment as a privacy-preserving tool.

Therefore, we present a miniature version of the LiDAR sensor
in this paper. The MagikEye firm produced this sensor (shown in
Fig. 3(a)). In comparison to traditional LiDAR devices, this one
is smaller and lighter. It is 44, 24, and 16 inches wide, deep, and
tall, correspondingly. The goal of this design is to make it easier
to use the sensor as a wearable device, which will pave the way
for the next generation of privacy-preserving technologies. For
processing our algorithms, the LiDAR sensor is connected to a
processor unit of a battery-powered Raspberry Pi 4 Model B [35].
The Raspberry Pi 4 Model B is a small single-board computer
with a 1.5GHz ARM Cortex-A72 quad-core CPU and 4GB RAM
that can be utilized for mobile devices. In Fig. 3(b), Hitonavi-µ
consists of a small-size sensor and a compute module. The sensor
has around 30 frame per second in our environment.

4.2 The Data Collection
To create a signature database, we collect the 3D point clouds

of various subjects. This is accomplished by using the sensor
to capture the scene and sending the resulting point cloud to our
server via the Hitonavi-µ’s onboard WiFi module. The data is
collected while the subjects are mobile(walking) and immobile
(standing in conversation), aiming for the life-logging applica-
tion. The sensor is worn around the subject’s neck and on his
chest. The data collection environment is depicted in Fig. 10.
The sensor’s typical use scenario is shown in Fig. 4(a), and its
corresponding acquired point cloud is depicted in Fig. 4(b). As
can be seen, only the x, y, and z coordinates are available for each
cloud point, and there are some noises in the frame.

3ⓒ 2022 Information Processing Society of Japan

IPSJ SIG Technical Report
Vol.2022-DPS-191 No.38

Vol.2022-MBL-103 No.38
Vol.2022-ITS-89 No.38

2022/5/27



(a) Actual scene (b) Point cloud as captured by
the sensor

Fig. 4 Typical use case scenario.

Fig. 5 The effect of the Noise Removal module.

4.3 The Learning Part
The learning stage is made up by the following three modules.

Noise Removal, Feature Extraction, and Subject Identification.
4.3.1 Noise Removal

This module is designed to reduce noise and background that
can degrade the quality of identification by deceiving the model.
The Density-Based Spatial Clustering of Applications with Noise
algorithm (DBSCAN) [36] is employed to detect and remove
noise. DBSCAN has two benefits that prompted us to use it for
noise reduction. First, it can function independently of domain
knowledge, such as the number of clusters which K-Means [37]
demands. Second, DBSCAN may also construct clusters with any
forms and densities, unlike other clustering approaches. [38,39].

DBSCAN is based on the notion that clusters are dense loca-
tions in space, such as the subject’s arm, chest, and head, sepa-
rated by lower density regions. DBSCAN can thus detect clusters
by examining the local density of the points. Eps and MinPts
are required parameters for DBSCAN. The radius of the circle to
be generated around each point to check the density is indicated
by Eps, and the minimum number of points necessary inside that
circle for that point to be classed as a Core point is indicated by
MinPts. DBSCAN constructs a Eps radius circle around each
point and identifies it as a Core point, Border point, or Noise
point. If the circle around a point has at least MinPts points, it
is a Core point. If the number of points is less than MinPts, it
is categorized as a Border point, and if there are no other points
within a radius of Eps, it is classed as Noise.

The efficacy of DBSCAN is improved by taking into account
the temporal effect across successive point cloud frames. To ac-
complish it, the points from n successive frames are added to-
gether to create an integrated frame. As a result, DBSCAN is
used to cluster points in that integrated frame. The idea behind
this technique is that by combining human and noise clusters, the
density difference between them would increase, making noise

detection and removal easier.
This module produces a number of clusters and labels one of

the clusters whose size of points is the largest as ’human’. After
that, an only ’human’ cluster is kept while others are regarded as
noise and removed.

Fig. 5 shows the performance of the noise removal module in
three cases: single frame, integrating three frames and integrating
five frames. The purple points represent noise while other colors
represent clusters of the scene. In a single frame, DBSCAN does
not work well because most of the points representing the person
are classified as noise. The situation gets worse as the point of the
noise are going to be classified as human because their size is the
largest. In the case of three and five integrating frames, DBSCAN
properly divides points into clusters and noises compared to the
single frame case. Thus, the figure confirms that the more frames
to integrate, the better noise detection is achieved. This can be
justified as the integration increases the density of the main clus-
ters of the subject while keeping the noise sparse at low density.
This boosts the noise detection and clustering skills of DBSCAN.
4.3.2 Feature Extraction

We propose a feature extraction technique based on Fisher Vec-
tor (FV) representations in this section. The FV representation is
a suitable choice for representing point cloud data since it is in-
dependent of sample sizes of point clouds. FV representation is
used to define discriminative signatures of diverse subjects with
varying sizes (as in 3D point cloud frames). It also represents the
spatial locality of points implicitly. The deviation of 3D points
from a generative model (e.g., Gaussian Mixture Model (GMM))
is characterized as this signature by calculating the gradients of
the sample’s log-likelihood with respect to the model parameters
(i.e., weight, mean, and covariance). FV also has a fixed-size grid
structure, which makes it a simple input to any classifier.
4.3.3 Subject Identification

In this section, we’ll show how we create a classification model
that can accurately distinguish between various subjects based on
the Fisher representations. Random Forest Classifier is used in
this case. The random forest has a number of decision trees;
each one produces a class prediction, and the model with the most
votes is chosen.

The motivation for employing Random Forest is the capacity
to train a large number of generally uncorrelated models (trees)
working as an ensemble of more accurate predictors than indi-
vidual ones. Random Forest is also a flexible, easy-to-use su-
pervised learning algorithm that, even without hyper-parameter
adjustment, gives excellent results the of the time [40]. Because
of its simplicity and versatility, it is also one of the most widely
used algorithms. The features extracted by the feature extraction
module are fed into the classifier as input. The best results were
obtained with 10 trees using the split metric entropy. After the
model has been trained, the extracted Fisher representation can
be used to recognize the object in question.

5. Evaluation
We conducted a preliminary experiment(Experiment1) and a

life-logging experiment(Experiment2) to evaluate the end-to-end
performance of the proposed system. Experiment1 was con-
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(a) 1 Frame (b) 3 Frames (c) 5 Frames

Fig. 6 Confusion matrices of experiment1.

Fig. 7 Accuracy of the proposed system in experiment1.

ducted to test the device and our code. We collected data in a
small number of subjects under loose conditions in which sub-
jects are standing and other movements are not restricted. Exper-
iment2 was conducted under conditions in which subjects could
practice standing and walking activities. Regarding the walking
activity, we collected eight different directions. Table 1 shows
the number of subjects, activities, and data acquisition time of
each experiment. We also need to mention that there are implicit
hyperparameters that are different from the number of Frame in-
tegration and DBSCAN parameters(eps,minPts). e.g., the height
of the sensor or the restriction of subjects’ movement. In exper-
iment2, we fixed these parameters. As for parameters of fisher
features, we predefined 125 Gaussians with equal weights(0.008)
and variance(0.05). Regarding the parameters of Random Forest,
we set 10 trees and the entropy as a split metric.

5.1 Experiment 1
The experiment involves six subjects, including students and

staff members in our lab. The distance between the worn sensor
and the target subject is arbitrary and varies based on the subjects’
preferences during a natural conversation. For each targeted sub-
ject, the point cloud signatures are captured over the course of
three minutes. We used around 50 seconds-data and divide it into
80% training and 20% testing.

Fig. 7 shows the classification accuracy of the six subjects
when changing the number of integrated frames. As can be seen,
integrating more frames enhances the overall subject identifica-
tion accuracy up to 99.9% in the case of integrating five consecu-
tive frames.

Finally, we evaluate per subject identification accuracy at each
case of integrated frames. Fig. 6 shows the confusion matrices
of the six subjects when tested at each case of integrated frames.
The confusion matrices show the gain earned by integrating more
frames and the superiority of five-frames-based clustering. The
results also confirm the validity of the proposed system for iden-

Fig. 8 Data collection environment.

tifying different subjects even when a single frame-based cluster-
ing. This highlights the promise of the proposed system as the
next generation of the privacy-preserving life-log system.

5.2 Experiment 2
We collected standing and walking data for life-logging evalu-

ation. The number of subjects is 13 people. The Bird’s eye view
of the data collection environment is shown in Fig. 8. Consider-
ing a real conversation, the distance between the sensor and sub-
jects is around 80cm with a height of about 120cm(fits wearable
scenario).

As for standing activity, the subjects stand still facing the direc-
tion of the sensor for a time interval of 1 minute. As for walking
activity, we took data in eight different orientations to consider
the conceivable circumstances. i.e., the subjects need to come in
front of the sensor before starting a conversation and leave after
the chat. Its patterns are somehow divided into eight (i.e., front,
back, right, left, front right, front left, back right, back left). Each
subject has his own way/pattern of mobility and interaction which
can be captured from his walking speed and frequency of waving
hands.
5.2.1 Preparing Integrated Frames

Fig. 9 shows an example of the way of preparing the integrated
frames used in training and testing our model. Firstly, we collect
314 frames from raw point clouds. Then, we employ the window-
ing approach which considers a window of fifteen frames (1-15)
then integrates them into one frame called ”Data1”. Then, the
window is shifted one frame forward for integrating the next fif-
teen frames (2-16) to create ”Data2”. This process is repeatedly
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Table 1 Information on experiments

Experiments Number of subjects Activity Data acquisition time
Experiment1 6 Standing 3 mins

Right
Left

Front Right 1 mins
Experiment2 13 Walking Front Left

Back Right
Back Left

Front and Back 3 mins

Fig. 9 Way of creating data for training and testing our model.

(a) Total processing time of the
proposed system

(b) Processing time for each
process

Fig. 10

applied on all frames creating data of 300 integrated frames. This
is how each subject’s data are constructed and finally concate-
nates all of the subject’s data. This whole data is split into 80%
training and 20% testing.
5.2.2 Processing Time

Considering the usage of our system on the edge device, we
measured the time it takes to process raw point cloud data and
classify. i.e., the time for integrating frames and applying DB-
SCAN, feature extraction, and classification. Fig. 10(a) shows
the time corresponding to each number of integrated frames. The
more frames we integrate, the longer time it takes. We also
measure the time by splitting processes into the former part and
the latter part. The former part includes Integration Time of
frames(IT) and Applying DBSCAN Time(ADT), while the lat-
ter part includes Feature Extraction Time(FET) and Classification
Time(CT). Fig. 10(b) shows that the influential factor for process-
ing time is the Frame Integration and DBSCAN processes.
5.2.3 Parameter Tuning

We select the optimal parameters that maximize our system
performance per each activity. We set a range of parameters as
follows. The number of frames to integrate in the range of [1,15],
The eps in the range of [10,35], and minPts in the range of [5,30].
We tried to find the best combination of parameters among these
values.

As we mentioned in the preliminary experiment section, the

Fig. 11 Best accuracy when the number of frame integration changes.

best combination of DBSCAN parameters(eps, minPts) depends
on the number of integrated frames due to variation of density.
Therefore, we analyzed classification accuracy in terms of the
number of frame integration. The results are shown in Fig. 11.
The more frames we integrate, the better accuracy we can get re-
gardless of various activities. This is unexpected results for us
because we first expected that the accuracy of mobile activities
would drop as we integrate multiple frames due to the disappear-
ance of human figures. The considered reason for the high accu-
racy of mobile activities is that the model can capture signatures
over the time sequences by frame integration. i.e., the model can
learn the subject’s walking patterns which are unique to every
person. In that case, the walking speed of subjects may affect the
results.

If real-time processing is essential, we cannot integrate many
frames, e.g., 15 frames, because it takes 10 seconds per single hu-
man identification estimate (See Fig. 10(a)). It is noteworthy that
there is a trade-off between the processing time and the identifica-
tion accuracy. Thus, the system designer can choose the number
of integrated frames based on the demand of real-time process-
ing. Since real-time processing is not crucial for the proposed
life-logging application, it wouldn’t be a problem to select a win-
dow of 15 frames for superior accuracy. However, even with only
five frames case (faster by 9.7sec), the overall accuracy reaches
95.42%. Fig. 12 shows the confusion matrix of how the system
performs per each subject.

6. Conclusion
We proposed a point cloud-based subject identification system

for the purpose of life-logging using the first small-size wear-
able LiDAR. We presented the details of the system and its abil-
ity to detect and remove noise and extract discriminative features
facilitating the accurate identification of different subjects. To
achieve that, the proposed system leverages a combination of
Spatio-temporal clustering for noise removal and a learned rep-
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Fig. 12 Confusion matrix of experiment 2

resentation using the Fisher vector. This representation is further
harnessed to train a random forest classifier for recognizing the
user in the scene. We evaluated our system on two different ex-
periments and achieved high accuracy in both experiments. The
first preliminary experiment showed that our system accurately
identifies subjects in a stationary case. In the second experiment,
we tuned the parameters to maximize our system performance on
both stationary and mobile cases. The results showed higher ac-
curacy as we integrated multiple frames. We also measured the
time it takes to identify subjects from about one second of data.
The processing time increases as the number of integrated frames
increases due to the DBSCAN process. We achieved 95.42% ac-
curacy when we select 5 frame integration and tune DBSCAN
parameters. Since processing time and accuracy are trade-offs,
we can choose the number of integrated frames based on the pur-
pose.

In the future, we plan to add an activity recognition for au-
tomatic adaptation of the system parameters. Secondly, we will
work on the reduction of processing time of clustering. Thirdly,
we aim to deploy our system on edge to measure how much en-
ergy consumes.
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