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Abstract: Assessing whether an ungraded second language learner can read a given text quickly is important for
supporting learners of diverse backgrounds. Second language acquisition (SLA) studies have tackled such assessment
tasks wherein only a single short vocabulary test result is available to assess a learner. Such studies have shown that
the text-coverage or namely the percentage of words the learner knows in the text, is the key assessment measure.
Currently, count-based percentages are used, in which each word in the given text is classified as being known/un-
known to the learner, and the words classified as known are then simply counted. When each word is classified, we
can also obtain an uncertainty value as to how likely each word is known to the learner. However, how to leverage
these informative values to guarantee their use as an assessment measure that is comparable to that of the previous
values remains unclear. We propose a novel framework that allows assessment methods to be uncertainty-aware while
guaranteeing comparability to the text-coverage threshold. Such methods involve a computationally complex problem
for which we also propose a practical algorithm. In our evaluation using newly created crowdsourcing-based dataset,
our best method under our framework outperformed conventional methods.

Keywords: uncertainty, vocabulary tests, readability assessments, natural language processing

1. Introduction

Second language learners, particularly adults, have diverse
backgrounds. They may have different first languages, they may
have started learning from different ages, and they may have un-
dergone different styles of education. Despite their diverse back-
grounds, there are many social situations in which we need to
quickly assess whether each learner can read a text; for exam-
ple, when choosing the first textbook for each newcomer to a lan-
guage school or screening immigrants who may need language
assistance for reading administrative documents that they need to
understand.

In such situations, a learner assessment should be finished
quickly using the minimum manual effort required for an eval-
uation. Previous studies [15], [23], [26] have shown that vocabu-
lary tests meet such conditions. Typically, such a test consists of
multiple-choice questions that can be scored easily, and a learner
can finish answering 100 questions in only about a half an hour.
Given one quick vocabulary test result for a learner and a text
of interest, our goal is to assess whether the learner can read the
text. Owing to their diverse backgrounds, it may not be possi-
ble to classify learners with a one-dimensional ability scale, i.e.,
some learners can be good at some particular types of words, for
example, musicians can be expected to know more music-related
words in the test than others. Hence, our goal is not to measure
learners’ ability, but to assess whether each learner can read a
given text. We call this task Personalized Readability Assessment
(PRA) (Fig. 1).
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Fig. 1 Task setting for PRA. Given a learner’s vocabulary test result, the
task is to assess whether the learner can read a text.

Previous studies on a PRA have independently shown that the
text coverage (TC), namely, the percentage of words that the
learner knows in a text, is a key measure to assess readabil-
ity [15], [23]. To calculate this percentage using the vocabulary
test result of each learner, these methods first classify each word
in the text based on whether it is known to the learner. Because
this is merely a binary classification, there are numerous methods
that are applicable. If the count-based percentage of words classi-
fied as known, is above a certain threshold, the text is assessed to
be readable to the learner. Interestingly, this threshold is known
to have a relatively small range of 95%–98% for various texts and
diverse learners.

In education, it is common to improve the ability of learners by
having them read texts that are slightly more difficult than their
ability. In order to do this, it is useful to be able to measure the
probability that the learner will be able to read the text at a level
close to the learner’s ability. This enables us to build a system
that can search texts that the learner may not be able to read and
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fully understand and hence is appropriate for their learning the
language.

Because this assessment is based on classifying each word as
known or unknown to a learner, improving this classification is of
key importance. When classifying each word in a text, we can ob-
tain not only a binary classification but also a classification of the
uncertainty values, demonstrating the confidence of classification
which is typically within the range of [0,1]. Because we have only
one quick vocabulary test result available for each learner, each
classification can be uncertain for numerous words, e.g., 0.4 or
0.6. Leveraging these values is reasonably expected to improve
the assessment accuracy and may provide more detailed informa-
tion for each learner. These uncertainty values, however, have
previously been simply ignored and converted into either a 0 or 1
because it was unclear how to leverage these values to calculate
an assessment measure comparable to the text-coverage. Without
a comparable measure, we cannot utilize previously determined
text-coverage threshold values for an assessment.

To this end, we propose a novel uncertainty-aware framework
for PRA. In our framework, assessment methods can leverage
uncertainty values from classifiers because the approach gener-
alizes text-coverage to uncertainty-aware measures comparable
to the previously validated thresholds. Calculating generalized
text-coverage values requires solving a computationally complex
problem for which we also propose a practical algorithm.

Evaluation of a real dataset created using crowdsourcing
showed that the best method derived from our framework which
leverages uncertainty values, outperformed conventional methods
by a maximum of 11 points in terms of the mean average preci-
sion when assessing personalized readability. Moreover, quali-
tative results showed that methods under our framework can in-
dicate whether we need more information to accurately assess a
learner.

Our contributions are as follows:
( 1 ) To assess whether a learner can read a text based only on a

single vocabulary test result, we propose a novel framework
that allows methods to be uncertainty-aware while keeping
their assessment results comparable to the count-based text-
coverage thresholds used in previous studies.

( 2 ) The derived methods involve computationally complex
problems for which we also propose a practical dynamic-
programming-based algorithm.

( 3 ) To evaluate the accuracy of the derived methods, we created
an openly available personalized readability dataset using a
crowdsourcing method *1.

( 4 ) The evaluation results show that the best method derived
here consistently outperforms the conventional methods in
terms of the mean average precision by a maximum of 11
points. The derived methods can also provide a detailed
qualitative analysis.

2. Related Work

Readability assessment has been studied in natural language
processing (NLP) as well as second language acquisition (SLA).

*1 Refer to Section A.2 for our dataset and code.

However, such studies typically assume that more information is
available to the learner such as syntactic or reading comprehen-
sion test results [2], [18], [32]. While such information may lead
to accurate assessments, it typically requires skilled evaluators
and more time to assess and so does not meet our need to quickly
assess readability. Hence, our study is focused on vocabulary or
lexical aspects.

In addition, most NLP readability assessment tasks are not per-
sonalized since these assume that learners are already graded. In
such cases, predicting the grade for a given text is the main fo-
cus of the readability assessment. In second-language vocabulary
tutoring studies, while personalizing affective policy has been ad-
dressed [14], this study does not address readability assessments.
A few studies focusing on personalized readability assessment
in NLP have been published, including complex word identifi-
cation (CWI) task studies [11], [24]. CWI is a task that aims to
identify complex words in a text [28], [34]. Unlike personalized
CWI, which identifies only complex words, our goal is to assess
whether the target learner can read a given text using personalized
CWI classifiers.

Personalized readability assessment has a direct application
in retrieving appropriate learning materials for learners. PRA
was applied for this purpose in English [7], [9], [10], [11], [12]
and later in Chinese [33] using conventional uncertainty-unaware
methods.

With the aim of quickly assessing learners using vocabulary
tests, the PRA task became the main focus in English second lan-
guage acquisition studies [15], [22]. To calculate text-coverage,
some of these early studies conducted reading comprehension
tests in which test-takers were also asked to report the words that
they did not know in the texts of the tests. Soon, it was reported
that a text is readable if a learner knows 95% or more of the words
in the text.

Studies that followed this earlier research proposed more con-
venient methods for classification or reported more detailed
thresholds. The study [27] proposed a carefully designed vocabu-
lary test called vocabulary size test (VST) based on the frequency
ranking of the British National Corpus [3]. This test consists of
100 questions each of which consists of a sentence containing the
target word and asks the test-taker to choose the correct mean-
ing of the word from multiple options. The questions are ran-
domly sampled from the most frequent 20,000 words while care-
fully avoiding misleading or confusing words. Then, by simply
multiplying 200 by the number of correctly answered questions,
the vocabulary size of each learner can be estimated.

By classifying each word in a text, their method is based on a
rough assumption that, in the ranking order of the 20,000 words,
based on the learner’s vocabulary size, the learner knows all of
the more frequently used words and does not know all of the less
frequently used words. Clearly, this is not a realistic assumption,
and it was reported that this only works when the backgrounds of
the learners are not very diverse, such as with students attending
the same school [27]. We call this method VST.

To achieve a more accurate classification, previous NLP stud-
ies have proposed machine-learning-based models [11], [24].
Given a learner and a word, in these studies, they train a binary
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classifier that models the ability of each learner as a parameter
and uses it to classify each word in the text. Although uncertainty
values are obtainable from some of their models, the authors did
not address how to appropriately handle these uncertainties.

Notably, PRA methods can be easily exported to languages
other than English because assessments are solely based on vo-
cabulary test results without using other complex linguistic fea-
tures such as syntax. PRA methods have been reported to be
successful in both Chinese and Japanese [4], [25].

In NLP, outside of the PRA task, a mathematically similar
problem has been studied for the very different aim of aggregat-
ing document classifier outputs to estimate the relative frequency
over document labels. These are known as prevalence estimation

tasks [19].

3. Formalization

This section introduces our novel uncertainty-aware frame-
work. We first introduce the conventional PRA methods.

First, we define the notation. Our goal is to assess whether
learner l j can read text T . We consider J learners, i.e., {l1, . . . , lJ}.
We let text T consist of vocabulary with size I, i.e., {v1, . . . , vI}.
We denote fi as the frequency of word vi in text T . Therefore, the
total frequency of the words in T is |T | = ∑I

i=1 fi. Let yi, j ∈ {0, 1}
be a binary variable that takes 1 when learner l j knows word vi;
otherwise, apply a value of 0.

The notation used here is summarized in Table 1. Using this
notation, the text-coverage of learner l j in text T , CT , j, is calcu-
lated as follows.

CT , j =

∑I
i=1 yi, j fi
|T | =

I∑

i=1

yi, j
fi
|T | (1)

As stated above, it must be determined whether the TC defined
in Eq. (1) is larger than the TC threshold δ. That is, it is neces-
sary that CT , j ≥ δ for learner j to be able to read text T . Here, δ
usually ranges from 0.95 to 0.98 [23], [26].

In previous studies, yi, j in Eq. (1) has been considered as
merely a binary variable and not a random binary variable. This
means that we assume that the TC is deterministic without un-

certainty. This assumption is unrealistic for the following rea-
son. It is difficult to practically test learner j based on all the
words possibly occurring in a text. In practice, even for a learner
whose second language vocabulary is scrutinized, some words in
T are likely to remain untested and therefore uncertain. Thus,

Table 1 Definitions of variables.

j learner index
l j j-th learner. J is the number of learners.
T text to read.
i index in the vocabulary of T . The size of the vocabulary is I.
vi i-th word in the vocabulary of T .
fi frequency of i-th word vi in T .
|T | total number of words in T . |T | = ∑I

i=1 fi.
δ Text-coverage threshold. 0 ≤ δ ≤ 1.

CT , j Text-coverage of learner j in text T .
yi, j ∈ {0, 1}. 1 if word vi is classified as known to learner l j; other-

wise, 0.
pi, j probability, i.e., uncertainty, that yi, j = 1. P(yi, j = 1). We also

write pi when j is fixed.
S j

∑I
i=1 yi, j fi.

by regarding yi, j as a random variable rather than a fixed con-
stant, more realistic situations can be better modeled in second-
language learning.

3.1 Proposed Uncertainty-aware Framework
The key to our uncertainty-aware framework is to regard yi, j in

Eq. (1) as a binary random variable. Specifically, we model yi, j

using a Bernoulli distribution yi, j ∼ B(pi, j), where P(yi, j = 1) =
pi, j.

Let us revisit the text-coverage defined in Eq. (1). Note that
this text-coverage is defined as merely a weighted sum of yi, j

weighted using the normalization constant fi
|T | . Because the sum

of random variables with constant weights is another random
variable, if we regard yi, j as a random variable, the text-coverage

is also a random variable. Hence, Eq. (1) can be viewed as fol-
lows: We have I binary random variables {y1, j, . . . , yI, j, indepen-
dently but not identically distributed, and we need to calculate
the probability that the weighted sum of these random variables
is above the threshold |T |δ. By writing the weighted sum as
S j =

∑I
i=1 yi, j fi for simplicity, this can be written as follows.

P(CT , j ≥ δ) = P
(
S j ≥ |T |δ

)
(2)

3.2 Generality
Equation (2) showed that the event in which the text coverage

surpasses threshold δ is now a probabilistic event. This occurs
with the probability of P(CT , j ≥ δ), and may not occur under
1 − P(CT , j ≥ δ).

Our framework Eq. (2) is a generalization of the previous
framework. The methods applied in the previous framework can
be regarded as a special case of Eq. (2) when P(CT , j ≥ δ) and
each P(yi, j = 1) = pi, j is exactly 0 or 1.

As summarized in Section 2, the methods used with the pre-
vious framework classify each word i as known or unknown to
learner j or in other words determine the value of yi, j as 0 or 1. In
our framework, this can be equivalently interpreted as determin-
ing the value of P(yi, j) as follows: Determining yi, j as 1 is equiv-
alent to determining P(yi, j = 1) = 1, and determining yi, j = 0 is
equivalent to determining P(yi, j = 1) = 0.

3.3 Complexity of Eq. (2)
In Eq. (2), let us focus on

∑I
i=1 yi, j fi. Each yi, j follows a

Bernoulli distribution and is weighted by the constant fi. Hence,
its distributioni is called a weighted Poisson-binomial distribu-

tion, or “the distribution of a sum of independent Bernoulli
random variables which may have non-equal expectations” [5].
In other words, it is a sum of independent but not identically
distributed Bernoulli random variables. Notably, whereas it
is known that a sum of independent-and-identically-distributed
Bernoulli random variables follows a binomial distribution, this
does not follow a binomial distribution because each yi, j is not
identically distributed.

How can we calculate the probability that S j is above the
threshold |T |δ in Eq. (2)? Naively, we can calculate it by enu-
merating all possible values of {y1, j, y2, j, . . . , yI, j} starting from
{0, 0, . . . , 0} to {1, 1, . . . , 1} and sum the probability of each of

c© 2022 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.30

these cases by checking if
∑I

i=1 yi, j fi is above the threshold. How-
ever, we immediately notice that this method is computationally
prohibitive because of the exponential cost of enumerating the
combinations O(2I).

4. Proposed Algorithm Using Subset-sum

Equation (2) formalizes the probability denoting how likely it
is that the text-coverage surpasses δ (delta). However, calculating
this probability is not straightforward since the naive method is
computationally prohibitive.

To this end, we propose an exact and practical algorithm to ob-
tain the probability of Eq. (2). Our key focus in Eq. (2) is that fi,
the frequency of word vi in text T , is an integer. Hence, we can
see that S j only takes an integer value when yi, j takes a value of
0 or 1.

Unlike continuous values, we can iterate through integers. Let
us recall δ ∈ [0, 1] as a rate. Let us simply write the smallest inte-
ger that is equal to or larger than the threshold |T |δ as M = �|T |δ�.
Then, Eq. (2) can be simply written as the sum of probabilities
from S j = M to S j = |T |.

P(S j ≥ |T |δ) = P(S j = M) + P(S j = M + 1) + · · ·
· · · + P(S j = |T |) (3)

Equation (3) shows that, to calculate the probability of Eq. (2),
we only need to calculate P(S j = N) for a given integer N. Inter-
estingly, the calculation of P(S j = N) can be reduced to a modi-
fied version of the famous subset-sum [20] problem as follows.

Let us revisit the definition of S j, i.e., S j =
∑I

i=1 yi, j fi. Here,
S j is the sum of fis whose yi, j = 1. Hence, we can regard S j

as a sum of fis, where yi, j determines whether fi is included in
the sum. We can restate this using the following subsets: Let us
denote F = { f1, f2, . . . , fI} for simplicity. In addition, consider a
subset of F , namely, A ⊆ F . Then, determining the values of
y1, j, y2, j, . . ., and yI, j is identical to choosing a subsetA such that
yi, j = 1 if and only if fi ∈ A, and yi, j = 0 if and only if fi � A.
For example, if y1, j and y3, j are 1 and all the other values of yi, j

are 0, then A = { f1, f3}. Hence, our goal is to first find subsets

of F that exactly sum to a given positive integer m, and to then
calculate the probability of each of such subset arising.

The first problem, finding subsets of F that exactly sum to a
given integer m, is exactly what the famous subset-sum problem
deals with. Although this is an NP-complete problem, a popu-
lar practical dynamic programming (DP) based algorithm can be
applied [20]. Unlike the first problem, the second problem, calcu-
lating the probability that each such subset arises, seems to have
been not so popularly addressed in Ref. [20]. We found that this
probability can also be calculated by modifying the DP-based al-
gorithm for the subset-sum problem, as implemented with Sub-

setSumP in Algorithm 1.
Algorithm 1 operates as follows. First, the algorithm takes the

listed inputs. Our goal is to obtain the probability that the text-
coverage of T surpasses δ, given the index of learners of interest
j, text T , its word frequencies { f1, f2, . . . , fI}, and the probabil-
ity that learner l j knows each word {p1, p2, . . . , pI}. Algorithm 1
is composed of two functions. The first, ProbTCsurpass, is the
main function returning P(S j ≥ |T |δ). Internally, according to

Eq. (3), it repeatedly calls the second, SubsetSumP, which even-
tually calculates P(S j = N) for a given integer N.

SubsetSumP takes two augments: i and N. It returns the prob-
ability that the subsets of { f1, f2, . . . , fi} will exactly sum to N.
Notably, when i = I, SubsetSumP(I,N) returns P(S j = N). In-
ternally, SubsetSumP(I,N) performs a calculation by recursively
calling itself. Whereas DP algorithms are typically described us-
ing so-called DP tables to remove the need for recursive calls,
we did not use such tables to describe Algorithm 1 because re-
cursive calls are easier to understand. Although recursive calls
can be slow if the overhead incurred when calling a function is
large, in practice, by using the memoization technique, or simply
caching the arguments and returned values of SubsetSumP in a
hash table, SubsetSumP operates at a practical speed. In Subset-

SumP, the probability that { f1, f2, . . . , fi} sums up to N is recur-
sively expressed as the sum of the probabilities of summing up
{ f1, f2, . . . , fi−1} in Line 17 and Line 18.

4.1 Computational Complexity
As described, our algorithm leverages Eq. (3) and solves the

subset-sum problem multiple times to obtain P(S j = N). Be-
cause the subset-sum problem is known as an NP-complete prob-
lem [20], this approach is also at least NP-complete.

The DP-based algorithm, which solves the subset-sum prob-
lem in a practical manner, has a pseudo-polynomial time com-
plexity [20]. Since this algorithm and our SubsetSumP function
in Algorithm 1 essentially differ only in the value to return, these
have the same complexity.

The exact computational complexity of Algorithm 1 can be ob-
tained as follows. Considering that δ is usually close to 1, the
computational complexity of one SubsetSumP call can be writ-
ten as O(I|T |). Because we call SubsetSumP (1.0 − δ)|T | times
in Algorithm 1, the time complexity of Algorithm 1 amounts to
O(I|T |2(1−δ)). Although this time complexity does seem polyno-
mial, an intrinsically infinite memory is assumed, and Algorithm
1 is pseudo-polynomial. In a readability assessment, the length of
the text |T | is typically less than 1,000 words. In our experiments,
Algorithm 1 operated in a practical manner for typical inputs.

In our application, we only need to consider integer weights
because the weights are frequencies. More generally, if we
also allow continuous weights, the weighted sum of independent
but not identically distributed binomial distributions is called a
weighted Poisson-binomial distribution [5]. Calculating the prob-
ability that the distribution surpasses a threshold is identical to
calculating a cumulative distribution function of the distribution,
and a more complicated practical algorithm was therefore pro-
posed [16]. Because our application does not require continuous
weights, however, we did not use this complicated algorithm.

5. Experiments

5.1 Comparison of Classifiers
The uncertainty-aware methods under our framework use clas-

sifiers from which we can obtain uncertainty values pi, j = P(yi, j =

1), i.e., given learner l j and word vi, the probability that learner l j

knows word vi. The classifiers can be categorized into two types
based on their uncertainty values: hard and soft. The uncertainty
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Algorithm 1 ProbTCSurpass: proposed algorithm for calculating
the probability that a text-coverage surpasses the given δ. Here,
× is a simple multiplication of two scalar values.
Input: j: Index of target learner. { f1, f2, . . . , fI }: each fi is the frequency of

word vi in T . {p1, p2, . . . , pI }: each pi is the probability that learner l j

knows word vi. δ: text-coverage threshold, |T |: number of tokens in T ,
I: number of words in T .

Output: pTCsurpass: Probability that the text-coverage surpasses δ
1: function ProbTCsurpass(δ)
2: pTCsurpass ← 0
3: for N = �|T |δ� to |T | do
4: pTCsurpass ← pTCsurpass + SubsetSumP(I + 1,N)
5: end for
6: return pTCsurpass
7: end function
8: function SubsetSumP(i,N)
9: if i ≤ 1 then

10: if N = 0 then
11: return 1
12: else
13: return 0
14: end if
15: end if
16: if N ≥ fi−1 then
17: return pi−1 × SubsetSumP(i − 1,N − fi−1)
18: +(1.0 − pi−1) × SubsetSumP(i − 1,N)
19: else
20: return (1.0 − pi) × SubsetSumP(i − 1,N)
21: end if
22: end function

values of hard classifiers are limited to 0 or 1. Those of soft clas-
sifiers are taken from [0, 1].

When we have a soft classifier, we can easily obtain a hard
classifier by thresholding its uncertainty values. Typically, 0.5 is
used as the threshold. Formally, for a soft classifier, whose uncer-
tainty value for learner l j and word vi is pi, j = P(yi, j = 1|l j, vi), its
corresponding hard classifier can be obtained using 1{pi, j > 0.5},
where 1{X} is the indicator function that returns 1 if X is true or 0
otherwise.

Our generalized framework is compatible with both con-
ventional and uncertainty-aware assessment methods. In our
framework, conventional uncertainty-unaware methods are ex-
pressed as methods that use only hard classifiers. By contrast,
uncertainty-aware methods are methods that use soft classifiers.
We compared the following classifiers.

VST is a hard vocabulary-size-based classifier conventionally
used and is described in Section 2. First, it measures the learner’s
vocabulary size based on a vocabulary test. Second, accord-
ing the word-frequency ranking in the British National Corpus
(BNC) [3], it determines whether or not the learner knows all
words whose ranks are below the vocabulary size.

LR is a logistic regression classifier that was previously used
in personalized complex word identification (CWI) tasks in NLP
as summarized in Section 2. The uncertainty of the personal-
ized CWI classifiers is modeled as follows, where σ(x):=1/(1 +
exp(−x)) is the logistic function.

p(yi, j = 1|vi, l j) = σ(wv · φv(vi) − wl · φl(l j)). (4)

In Eq. (4), the input consists of word features φv(vi) and learner

features φl(l j), where wv and wl are their respective weights.
Word features contribute to word difficulty and are typically com-
posed of word frequencies and word embeddings. By contrast,

Fig. 2 NN, a neural-network-based classifier.

because the background information of a learner might be un-
available, the learner feature vector φl(l j) is usually merely a one-

hot vector of size J, i.e., a J-dimensional vector whose j-th el-
ement is 1 and all others are 0. Unlike with typical machine-
learning methods, Eq. (4) allows us to interpret wv · φv(vi) as
the difficulty of word vi and φl · φl(l j) as the ability of learner
l j [1], [11]. We used the LibLinear [13] implementation avail-
able through the scikit-learn toolkit.

NN is a Neural-Net (NN) based classifier. Because NN-based
classifiers have been reported to outperform logistic regression
classifiers such as that used in LR, we added an NN-based clas-
sifier to our experiments. The structure of NN is illustrated in
Fig. 2. The input is the same as that used in LR: word features

φv(vi) and learner features φl(l j), which is merely a one-hot vec-
tor. Here, NN outputs uncertainty values by placing the softmax

function in its last layer before the output. As in Fig. 2, NN
uses typical techniques that have been reported to be effective
for improving the accuracy such as dropout [30], rectified linear
unit [21], and batch normalization, BN [17].

All hyper-parameters of LR and NN were tuned using ran-
domly sampled validation sets taken from the vocabulary tests.
To tune the hyper-parameters, we used the optuna toolkit *2 with
200 iterations. LR has the strength of regularization and NN has
the learning rate and the size of one hidden layer as the hyper
parameters.

5.2 Dataset
As illustrated in Fig. 1, PRA methods assess whether a learner

can read a given text solely based on the results of a quick vocab-
ulary test. Therefore, to evaluate such an assessment method, we
need a dataset in which each learner takes both vocabulary and
reading comprehension tests. We created such a dataset using
crowdsourcing.

We used the crowdsourcing platform Lancers, a major
Japanese crowdsourcing service, of which most of the workers
are native Japanese speakers. In total, 200 learners participated
in building the dataset. Because a readability assessment is our

*2 https://github.com/pfnet/optuna
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focus, learners who are more motivated for reading English than
listening, speaking, or writing are appropriate as participants in
our experiments. Therefore, as a qualification to participate in
our test, we added that they had to have taken the Test of En-
glish International Communication (TOEIC) by the English Test-
ing Service (ETS), a widely applied test in Japan, in which quick
and accurate reading is required to achieve a high score.

We used VST version A as the vocabulary test [27], which is
described in Section 5.1. In addition, we used Laufer and Short
as the reading comprehension tests.

Laufer includes a sample reading passage and questions [23].
This dataset was used to verify whether text coverages are effec-
tive for the PRA tasks. This verification is used for Israeli uni-
versity entrance exams, and the sample was a part of one such
exam. Thus, it was highly unlikely that the participants, mostly
Japanese, had ever taken this test. In these exams, a test-taker
who answered about 60% of their questions is assessed as capa-
ble of reading the texts in the exams. This test has a 380-word
passage accompanied by 5 questions, all of which ask test-takers
to select the correct answer from 4 options.

Short includes short texts also taken from the same entrance
exams used by Laufer. In Short, test-takers are first presented
with a short roughly sentence-length text (17.8 words on aver-
age) and asked to choose the text that is a correct paraphrase of
the presented text from four choice texts.

5.3 Features for Word Difficulty
Among the compared classifiers for the PRA methods pre-

sented in Section 5.1, LR and NN can use features to estimate
the word difficulty. We used the following features.

Freq is made up of word-frequency-based features from dif-
ferent corpora. Specifically, we used the unigram probabilities
from the BNC and the unigram probabilities from the Contempo-
rary Corpus of American English (COCA) [6]. The logarithm of
the unigram probability and the raw unigram probability of both
corpora were used as features.

GLOVE [29] GloVe non-contextualized word embedding: We
used 50-dimensional pre-trained vectors trained from Wikipedia
and the Gigaword corpus *3

5.4 Evaluation Measures
For the evaluation, we need to define the relationship between

readability and the reading-comprehension test results. In our
dataset, all reading-comprehension tests consist of a passage and
questions. To correctly answer a question, a learner should be
able to read both the passage and the questions. Therefore, we
defined the probability that the learner can correctly answer each
question as the product of the probabilities that the passage and
question are readable.

To fairly compare the binary and probabilistic assessment re-
sults, we used the mean average precision (MAP) measure, which
is typically used for this purpose, particularly in information
retrieval tasks. For each learner, each readability assessment
method can be viewed as retrieving questions that the learner can

*3 Refer to 6B from https://nlp.stanford.edu/projects/glove/

Table 2 MAP scores of each method used for predicting the reading-
comprehension test results. δ = 0.98. Methods other than Pro-
posed are used as the baselines.

Methods Laufer Short

C
on

ve
nt

io
na

l VST 0.4880 0.5437
H-LR 0.5797 0.5304
H-NN 0.5810 0.5393
H-LR+GLOVE 0.5113 0.5613
H-NN+GLOVE 0.5250 0.5631

W
.A

vg
. A-LR 0.4880 0.4885

A-NN 0.4880 0.4885
A-LR+GLOVE 0.4880 0.4885
A-NN+GLOVE 0.4880 0.4885

Pr
op

os
ed UA-LR 0.6314 0.6533

UA-NN 0.6172 0.6533
UA-LR+GLOVE 0.6305 0.6743
UA-NN+GLOVE 0.6159 0.6524

answer correctly from among all questions. The average preci-
sion of a method for a learner is defined as the “mean of the pre-
cision scores after each correctly answered question is retrieved.”
The MAP of each method is the mean of the average precision
scores over all learners.

5.5 Compared Methods
Section 5.1 introduces hard and soft classifiers. We denote the

uncertainty-aware methods obtained from the proposed frame-
work by adding UA- to each classifier’s name. For example,
UA-LR denotes the uncertainty-aware method based on Eq. (2)
in which a soft classifier LR is used as the probabilistic classifier
of the words that each learner knows. As stated in Section 5.1,
soft classifiers can be easily converted by thresholding their un-
certainty values by 0.5. We denote the methods using the hard
classifiers converted from soft classifiers by adding H- to each
method’s name. For example, H-LR denotes the method using
the hard classifier LR.

We consider an easy baseline PRA method, the weighted av-

erage, which works by simply substituting the probabilities of
knowing words weighted by frequency as the text coverage, i.e.,∑I

i=1 fi pi. We denote this case by adding A- to the name of each
method. For example, A-LR denotes the results of the PRA
method identically as H-LR except that the average probabilities
using LR are substituted for the text-coverage.

5.6 Results
Table 2 shows the MAP values of each method. The meth-

ods in Proposed are uncertainty-aware methods proposed under
our framework, and the other methods are baselines. All methods
use the Freq features explained in Section 5.3. In the Method
column, the names after + are methods with the additional word-
embedding features explained in Section 5.3.

The uncertainty-aware methods consistently outperformed
their corresponding conventional counterparts. For example, UA-
LR outperformed H-LR and A-LR, and UA-LR+GLOVE out-
performed A-LR+GLOVE and UA-LR+GLOVE. These results
indicate that these methods can leverage the uncertainty values of
the classifiers and produce more accurate assessments than con-
ventional methods.

Since the weighted average underestimates the text coverage,
in Table 2, the A- methods classified almost all cases “unread-
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Fig. 4 A learner’s assessment results. Words with a darker background are less likely to be known to the
learner.

Fig. 3 Text-coverage distribution of a learner.

able” when the threshold δ = 0.98 was used. These results indi-
cate that we need to find an appropriate threshold again to use the
weighted average methods, which is impractical. Hence, the A-
methods’ scores are identical in Table 2.

In both Laufer and Short, the proposed uncertainty-aware
methods outperformed the conventional widely used VST by
more than 11 points. We can also see that all uncertainty-aware
methods outperformed the conventional methods. This means
that the gains made by leveraging uncertainty are much larger
than the gains made by introducing additional features or sophis-
ticated classifiers.

Importantly, the naive method of using the weighted average
(W. Avg.) as a substitute for the TC in Section 5.5 achieved con-
sistently poor results. This is because the weighted average is
consistently lower than the threshold δ for the reason elaborated
in Section 5.7. This result indicates that we cannot naively com-
pare the weighted averages to the text-coverage thresholds.

The gains made with uncertainty-aware methods were much
larger in Short than in Laufer. This result is intuitive because
Short has a small number of words; therefore, the effect of lever-
aging the uncertainty information helps more in achieving an ac-
curate assessment.

Regarding the cost of computation in Algorithm 1, we con-
ducted an experiment. In the experiment, Algorithm 1 took 35.9
seconds to process 100 texts with an average of 257 words. It
used 196 MiB of memory. The environment used for the experi-
ment was Google Colaboratory, a 2-core, Intel Xeon (R) CPU @
2.20 GHz environment with 12 GiB memory.

5.7 Qualitative Evaluation
Algorithm 1 enables us to calculate the text-coverage distri-

bution. In Fig. 3 (a), we show an example in which whether a
learner can read Laufer is assessed only from the learner’s vo-
cabulary test. This learner answered all the reading comprehen-
sion questions correctly, and hence, could read the text. Each bar
represents a probability that the learner’s text coverage takes that
value. The red dashed vertical line shows 0.95, a text-coverage
threshold *4. Hence, the sum of the rightmost two bars is the prob-

*4 0.95 was chosen to make Fig. 3 easy to understand.

ability that this learner is assessed as capable of reading the text.
The blue dotted vertical line shows the weighted average, or the
average of probabilities weighted by frequencies.

In Fig. 3 (a), the weighted average typically underestimates the
text coverage, since it takes all bars into account while only the
rightmost two bars are the key to assess. This makes it difficult
to meaningfully compare the weighted averages with the text-
coverage threshold. In this example, the weighted average is 0.94,
below the threshold. The sum of the rightmost two bars is 0.52.

When we have less data, classifiers’ uncertainty values tend
to be ambiguous, i.e., distributions become visually flat with in-
creased variance. Figure 3 (b) shows the results obtained under
the same setting as that of Fig. 3 (a) except that the training data
for classifiers or the size of the vocabulary test for each learner,
was halved. We can see that the flatter distribution Fig. 3 (b) low-
ers the weighted average below 0.95. By contrast, the rightmost
two bars show that the learner can read the text with a probability
of about 30%.

Thus, assessing readability using only weighted average values
is difficult since only the rightmost bars are the key. Unlike the
weighted averages, when using uncertainty-aware methods based
on our framework, we can use an off-the-shelf δ value, such as
0.98, and do not need to search for other threshold values. More-
over, our uncertainty-aware approach is beneficial in that the flat-
shaped distribution implies that we need more data for a learner.

If we use less training data, i.e., the smaller vocabulary test,
typically, but not always, the uncertainty values become ambigu-
ous. Figure 3 (b) shows the text-coverage distribution for the
same learner with Fig. 3 (a). The difference is that the classifier
of Fig. 3 (b) was trained using half of the training data used for
Fig. 3 (a). We can easily see that the distribution of Fig. 3 (b) is
flatter than that of Fig. 3 (a), implying more training data or vo-
cabulary questions are needed to make a more reliable assess-
ment. In this way, unlike previous methods, our uncertainty-
aware methods are useful in that these also show how reliable
their readability assessments are given the limited amount of in-
formation available.

Figure 4 shows an example of the assessment results from
Short. The darkness of the background color of each word in-
dicates the probability that the learner does not know the word.
H-NN and UA-NN were compared. The rightmost column shows
the probability that TC surpassed δ, which was set to δ = 0.98.
The word “Plato” was removed from the assessment because it is
a proper noun.

Figure 4 explains why the derived methods consistently out-
performed the conventional approaches as shown in Table 2. Be-
cause the text in Short consists of only 16 words, the learner
needs to know all the words. With H-LR, all words were clas-
sified as known to the learner because of the hard classifica-
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tion. Therefore, the text was assessed as readable to this learner.
Within UA-LR, however, all words are lightly colored, meaning
that all words, including seemingly easy words had some uncer-
tainty in the learner’s awareness of them. Specifically, words with
a dark background may be unknown to the learner at a probabil-
ity of 15% or more. Using Algorithm 1, UA-LR assessed that
the text coverage of this learner surpassed δ with a probability of
0.47. Since the learner chose an incorrect paraphrase in the ques-
tions of this text, the learner might possibly have been unable to
read it.

5.8 Evaluation using Easy Texts
Finally, we evaluated our method by using the publicly avail-

able dataset of easy texts. To this end, we used the On-
eStopEnglish corpus [31], which consists of texts annotated with
readability labels, namely elementary, intermediate, and ad-
vanced. According to the paper [31], the annotation was con-
ducted by professional native English teachers.

We used the 189 elementary texts in the dataset for the exper-
iments. When the learner of Fig. 3 reads texts, our method pre-
dicted that the learner could read 167 texts in the 189 texts, which
amounts to 88.3%. This result shows that the assessments by our
method do not contradict the annotation of a publicly available
readability dataset.

6. Conclusion

We propose a novel uncertainty-aware framework for the PRA
task of quickly assessing whether a second language learner
can read a target text using only a small vocabulary test result.
Our framework can derive methods that are uncertainty-aware
by leveraging the underlying classifiers’ uncertainty values while
guaranteeing the validity of using previously well-studied read-
ability criteria or the text-coverage threshold values. We pro-
pose an algorithm that allows the use of such uncertainty-aware
methods within the framework to make it computationally feasi-
ble. The experiment results indicate that our methods consistently
outperformed the baselines in terms of accuracy. Future work in-
cludes personalized text retrieval for language learners.
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Appendix

A.1 Python Code for Algorithm 1

class SRR:

def SRR_(self, i, j):

if (i,j) in self.cache:

return self.cache[(i,j)]

a = self.a

p = self.p

if i<=0:

return 1 if j==0 else 0

if j>=a[i-1]:

res = p[i-1]*(self.SRR_(i-1,j-a[i-1])) \

+ (1.0-p[i-1])*self.SRR_(i-1,j)

else:

res = (1.0-p[i-1])*self.SRR_(i-1,j)

self.cache[(i,j)] = res

return res

def run(self):

a = self.a

SUMA = sum(a)

Tint = int(SUMA*self.T)

ls = [ (self.SRR_(len(a),j),j) for j \

in range(Tint, SUMA+1)]

return sum([x[0] for x in ls])

def __init__(self, a, p, T=0.95):

self.a = a

self.p = p

self.T = T

self.cache = {}

print(SRR([4,3],[0.3,0.7], T=0.95).run())

[4, 3] denotes the frequency of two words. [0.3, 0.7] denotes
the probability of knowing the two words. This returns 0.21, the
probability that the learner knows all words in this case.

A.2 Datasets

We plan to make the dataset used in this paper publicly avail-
able at http://yoehara.com/ or http://readability.jp/. Some previ-
ous datasets such as Ref. [7] are available at the former website.
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