分散並列環境上での縦長行列のQR分解に対する 各種アルゴリズムの性能評価

深谷 猛^{1,a)}

概要:本稿では、4つのスーパーコンピュータシステム上で、縦長行列の QR 分解に関して、異なる特徴を 持つ4種類の数値計算アルゴリズムの実行時間を、強スケーリングの観点で評価した結果を報告する. QR 分解の数値計算アルゴリズムとしては、教科書等で広く知られているものから、近年の研究の成果として 提案された新しいものまで、様々なものが存在する. これらは、演算や通信に関して異なる特徴を持って おり、通信回避型アルゴリズムはその一例である. これらのアルゴリズムの性能(実行時間)は、その特 徴から、理論的な議論がある程度可能であるが、一方で、実際の計算機システム上で実行することで初め て分かる知見もあり、特に、大規模な分散並列計算では顕著である. 今回の性能評価により、各アルゴリ ズムの特徴をより詳しく把握するとともに、今後のアルゴリズムの研究開発に向けた課題を明らかにする ことを目指す.

1. はじめに

本稿では、分散並列計算機における、縦長(Tall-Skinny) 行列の QR 分解を考える. QR 分解は、基本的な行列分解 の一つであり、最小二乗問題の求解 [1] や特異値分解の前 処理 [2] などの応用を持つ.また、縦長行列の QR 分解は、 ベクトルの直交化 [3] や密行列の帯行列化 [4] と深く関係 しており、線形方程式や固有値・特異値問題のための数値 計算アルゴリズムを構成する道具としても利用される.

行列の QR 分解を計算する数値計算アルゴリズムとし ては、Gram-Schmidt の直交化と Householder QR 分解が 広く知られている [5]. 一方、大規模分散並列環境では、 ベクトルの内積などの計算で必要となる集団通信(例: MPI_Allreduce)のコスト(特にレイテンシ)が強スケーリ ング時のボトルネックとなることが多い.それに対して、 通信回避(CA:Communication-Avoiding)[6]の重要性が 指摘され、縦長行列の QR 分解に対する具体的なアルゴリ ズムとして、TSQR アルゴリズム [7]が提案された.また、 近年、TSQR と異なる別のアプローチである、Cholesky QR 型アルゴリズムについても進展[8],[9],[10]が報告された.

このように,現在,縦長行列のQR分解に対して,異なる特徴を持った様々なアルゴリズムが存在している.本稿では,これらのうちの代表的な4種類のアルゴリズムについて,異なる4種類のスーパーコンピュータシステムを用

いて性能評価を行い,強スケーリングの観点で実行時間を 検証した結果を報告する^{*1}.これにより,各アルゴリズム の特徴をより詳しく把握し,同時に,今後のアルゴリズム の研究開発に向けた課題を明らかにすることを目指す.

以下,2節で問題設定を提示し、様々なアルゴリズムを 概観する.その後、3節で今回の性能評価で対象とするア ルゴリズムの特徴を述べる.そして、4節で性能評価の結 果を報告する.最後に、5節で本稿のまとめを述べる.

2. 問題設定と様々なアルゴリズムの概観

2.1 問題設定

縦長の行列 $A \in \mathbb{R}^{m \times n}$ ($m \gg n$)の Thin QR 分解 (Reduced QR 分解) [12].

$$A = QR \tag{1}$$

を考える.ここで、 $Q \in \mathbb{R}^{m \times n}$ は列直交行列($Q^{\top}Q = I_n$ を満たす*²)、 $R \in \mathbb{R}^{n \times n}$ は上三角行列である.また、今回の性能評価では、Qを陽的に計算する場合を想定する*³.

行列の2ノルムによる条件数は,

$$\kappa_2(A) = \frac{\sigma_{\max}(A)}{\sigma_{\min}(A)} \tag{2}$$

で定義される. ここで, $\sigma_{\max}(A)$ は A の最大特異値, $\sigma_{\min}(A)$

¹ 北海道大学 情報基盤センター

^{a)} fukaya@iic.hokudai.ac.jp

^{*1} 記事 [11] にて、Oakforest-PACS 上で実施した同様の性能評価結 果を報告している.本稿の内容は、これを拡充したものとなる. なお、本稿で提示する Oakforest-PACS における結果は、プログラ ムの一部を多の後に、改めて性能評価を実施したものである.

^{*2} I_n : n 次の単位行列.

^{*3} 応用によっては、Qを直交行列の積などの形で陰的に求めれば十 分な場合もある.

は最小特異値である.本稿では,倍精度浮動小数点 (FP64) を用いる場合を想定し,A が数値的に列フルランクである ことを仮定する.これは, $\kappa_2(A) \leq 10^{16}$ を仮定することを 意味する.

本稿では,分散並列(MPI 並列)を想定している.その 際,計算対象の行列 *A* は,

$$A = \begin{pmatrix} A_1 \\ \vdots \\ A_P \end{pmatrix}$$
(3)

のような,行方向の1次元ブロック分散を仮定する.ここで,Pはプロセス数(並列数)である.また,計算結果の Qも同様のデータ分散を仮定する.なお,Rについては, 少なくとも一つのプロセスが全体を保持している(全ての プロセスが保持している必要はない),とする.

2.2 様々なアルゴリズムの概観

QR 分解の数値計算アルゴリズムは、Orthogonal Triangularization 型と Triangular Orthogonalization 型に大別でき る [12]. Orthogonal Triangularization 型アルゴリズムは、直 交変換 $\hat{Q}_1, \dots, \hat{Q}_k \in \mathbb{R}^{m \times m}$ により、

$$\hat{Q}_k \cdots \hat{Q}_2 \hat{Q}_1 A \to \begin{pmatrix} R \\ O \end{pmatrix},$$
 (4)

とAを上三角行列に変形する. さらに,

$$\left(\hat{Q}_k\cdots\hat{Q}_2\hat{Q}_1\right)^{-1} \begin{pmatrix} I_n\\ O \end{pmatrix} \to Q,$$
 (5)

として、Qを陽的に得る. Orthogonal Triangularization 型 の代表的なアルゴリズムは Householder QR である. また、 通信回避の観点で提案された TSQR アルゴリズムもこのク ラスに属する. それ以外には、Givens 回転を用いるアルゴ リズムや、Tile QR [13] などがある.

一方, Triangular Orthogonalization 型アルゴリズムは,上 三角行列 $\hat{R}_1, \ldots, \hat{R}_k$ により,

$$A\hat{R}_1\hat{R}_2\cdots\hat{R}_k\to Q \tag{6}$$

とAを列直交行列に変形する. さらに,

$$\left(\hat{R}_1\hat{R}_2\cdots\hat{R}_k\right)^{-1}\to R,\tag{7}$$

として, *R*を得る. Triangular Orthogonalization 型の代表的 なアルゴリズムは, Gram-Schmid の直交化に基づく種々の アルゴリズム [14] である. また, Cholesky QR 型の各アル ゴリズム [8], [9], [10], [15], [16] もこのクラスとなる.

3. 評価対象のアルゴリズム

今回の性能評価では,表1に挙げた4種類のアルゴリズ ムを対象とする.なお,本稿では,全プロセスにまたがる Collective 通信(集団通信)の回数が行列サイズ(主に *n*) に依存しない(O(1)回である)アルゴリズムを「通信回避 型」と呼ぶ.表1に挙げた4種類のアルゴリズムは,計算 対象の行列が悪条件(例: $\kappa_2(A) \simeq 10^{14}$)の場合でも,破綻 せずに十分な精度で計算可能なものである^{*4}.各アルゴリ ズムの計算精度に関する評価結果については,記事[11]を 参照されたい.

今回の目的は,各アルゴリズムの実行時間を強スケーリ ングの観点で評価することである.そこで,各アルゴリズ ムの演算量,通信回数,通信データ量を**表2**に示す.表2 に示した各値は,並列計算時のクリティカルパス上の値と なっている.ここで,演算量の項目で,log₂Pが含まれる項 は,集団通信のリダクションに伴う演算量(二分木に従っ て行うことを仮定)である.TSQR以外のアルゴリズムで は,MPI 関数の一部として陰的に実行されるものとなる. なお,演算量は主要部分のみを記載している(例:O(n³)の 項などは無視している).また,通信回数と通信データ量 は,全プロセスにまたがる集団通信を単位として算出した ものである.TSQR に関しては,一連の一対一通信全体を 集団通信に相当するものとみなして記載している(詳細は 論文[17]に委ねる).

以下では,各アルゴリズムの特徴を簡単に紹介する.詳 細については,記事[11]や各参考文献等を参照されたい.

3.1 Householder QR (HQR)

Householder QR は,数値線形代数分野における代表的 な直交変換の一つである,Householder 変換 [5] を用いた Orthogonal Triangularization 型の QR 分解アルゴリズムで ある.無条件安定で精度の良い QR 分解の計算手法とし て,一般的な数値計算の教科書で紹介されている.Level-3 BLAS (例:行列積)に基づいた高性能な実装方法として は,Compact WY 表現 [18] に基づいたブロック版のアル ゴリズム [3] が知られている.列方向の逐次性があり,各 列に対応する計算において,列ベクトルの内積等が必要と なるため,分散並列計算では O(n) 回の集団通信が必要と なる.

3.2 再直交化付き古典 Gram-Schmidt (CGS2)

Gram-Schmidt の直交化は 100 年以上の歴史を持つアル ゴリズム [14] である. アルゴリズムは,ベクトルのスケー リングと,直交化(直交補空間への射影)で構成され,どち らも右からの三角行列の作用で表記できるため, Triangular

^{*4} より正確には, HQR と TSQR は,本稿の $\kappa_2(A) ≤ 10^{16}$ の仮定 と関係なく,無条件に安定(ゼロによる除算や負の数の平方根 等によるアルゴリズムの破綻がない)である.一方,CGS2 は $\kappa_2(A) ≤ 10^{16}$ の条件の下で安定である. S-CholQR3 については, 厳密には, $\kappa_2(A) \simeq 10^{16}$ の場合などに破綻する可能性がある.た だし,内部の反復を増やす(例:3回から4回)ことで,破綻を 回避することが可能である.なお,計算精度に関しては,いずれ のアルゴリズムも十分なものとなっている.

Orthogonal Triangularization 型		Triangular Orthogonalization 型		
従来型	Householder QR (HQR)	再直交化付き古典 Gram-Schmidt(CGS2)		
通信回避型	TSQR	Shifted CholeskyQR3 (S-CholQR3)		

表1	評価対象のアルゴリズムの位置づけ.

表2 評価対象のアルゴリズムの演算量・通信回数・通信データ量:並列数を P として、並列計 算時のクリティカルパス上の値を記載している.また、通信回数と通信データ量は全プロ

セスにまたかる集団通信を単位として昇出している.					
アルゴリズム	演算量	通信回数	通信データ量		
HQR	$\frac{4mn^2}{P} + O(n^2 \log_2 P)$	O(n)	$O(n^2)$		
CGS2	$\frac{4mn^2}{P} + O(n^2 \log_2 P)$	O(n)	$O(n^2)$		
TSQR	$\frac{4mn^2}{P} + O(n^3 \log_2 P)$	<i>O</i> (1)	$O(n^2)$		
S-CholQR3	$\frac{6mn^2}{P} + O(n^2 \log_2 P)$	<i>O</i> (1)	$O(n^2)$		

Orthogonalization 型アルゴリズムに分類される. 具体的な 数値計算アルゴリズムとしては,古典(Classical)Gram-Schmidt (CGS) や修正 (Modiied) Gram Schmidt (MGS) な ど、様々なバリエーションが存在する.一般的に、計算対象 の行列の条件数に応じて計算精度(Qの直交性)が悪化す る特徴を持ち,その解決方法として,再直交化(Reorthogonalization) が知られている. 今回取り扱う CGS2 は, 古典 Gram-Schmidt に再直交化を付与したアルゴリズムである. Gram-Schmidt 型アルゴリズム全般として、列方向の逐次 性があり、各列に対応する計算で、ベクトルの内積等の計 算が必要となる. そのため, HQR と同様, 分散並列計算で は O(n) 回の集団通信が必要となる. なお、Level-3 BLAS の利用を目的としたブロック化の方法も存在する [19] が, 計算精度に関する理論的な根拠を持つアルゴリズムが複雑 で,また,一般的な実装方法が定まっていないため,今回 の性能評価では取り扱わないこととする.

3.3 TSQR

TSQR は,通信回避の目的で提案されたアルゴリズム [7] である.まず,独立して,各プロセスが自分が持つ部分行 列の QR 分解を計算する.その後,得られた上三角行列に ついて,一対一通信と三角行列を上下に並べた行列の QR 分解 (structured QR 分解)を繰り返すことで,最終的な R に集約する.文献 [7] で示されたアルゴリズムは,各部分 の QR 分解に Householder QR (やその変種)を用いており, 数学的には特殊な構造を持った直交変換による上三角化と なる.そのため,Orthogonal Triangularization 型に分類さ れ,Householder QR と同様に,安定性や計算精度に関して 優れた特徴を持つ [20].分散並列計算における通信パター ンは,リダクション操作として structured QR 分解を伴っ た集団通信 (MPI_Reduce に相当)と解釈できる.そのた め,通信回数は O(1)となる.一方,リダクション操作が QR 分解のため, $O(n^3 \log_2 P)$ の演算量が必要となり, nが 大きい場合に, これが問題となることがある [17]. また, structured QR 分解の実装が TSQR 全体の性能に大きく影響 を与える場合がある [21] ので, 注意が必要である.

3.4 Shifted CholeskyQR3 (S-CholQR3)

行列 A のグラム行列 ($W = A^{T}A$) のコレスキー分解 $(W \rightarrow R^{\mathsf{T}}R)$ を用いて、(数学的には) A の QR 分解を計算 できる ($Q = AR^{-1}$) [2]. これを Cholesky QR 分解と呼び, その手順が示すように, Triangular Orthogonalization 型に属 する. 縦長行列の場合,計算の主要部が Level-3 BLAS の 関数2つのみで構成されるため、単純かつ高い実行性能が 期待できるアルゴリズムである. また,分散並列計算では, グラム行列の計算で集団通信を1回だけ必要とするため, 通信回避型アルゴリズムとなる.しかし、アルゴリズムが 不安定 ($\kappa_2(A) \gtrsim 10^8$ で破綻) で、計算精度 (Qの直交性) が条件数に応じて悪化するという欠点を持つ. この問題に 対して、安定性や計算精度の改善を目的として、再直交化 を付与したアルゴリズム(CholeskyQR2) [8], [9], 部分的 に高精度演算を利用した混合精度型アルゴリズム [15], 部 分軸選択付き LU 分解を前処理に用いたアルゴリズム(LU CholeskyQR2) [16] などが提案された.本稿で取り扱う Shifted CholeskyQR3は、グラム行列に正の対角シフトを加 えた行列のコレスキー分解を前処理として用いる手法 [10] である.このアルゴリズムは、構造としては、Cholesky QR 分解を3回繰り返すものに相当する. そのため、演算と通 信コストが3倍になるが、Level-3 BLAS が中心で通信回避 型である、という長所は維持される.

4. 性能評価

4.1 各アルゴリズムの実装の概要

前節で挙げた4種類のアルゴリズムの実装の概要を述べ る.全てのプログラムはFortran90で実装した.できるだ け,BLASやLAPACKの関数を利用することとし,MPIに より分散並列化を行った.なお、スレッド並列化に関して は、スレッド並列版のBLASやLAPACKを用いることと し、独自にスレッド並列化は行っていない.以下、各アル ゴリズム固有の点について列挙する.

- HQR:固定幅によるブロック化を行ったアルゴ リズムを実装した.ブロック幅の候補は*l* = 4,8,16,32,64,128,256 (ただし、*l*≤*n*)とした.
- CGS2: 文献 [14] の 4.2 節で示されている CGS2 のア ルゴリズム (スケーリングと直交化を単純に繰り返す) を実装した.前節で述べたように、ブロック化は採用 していない.
- TSQR:各プロセスが最初に行うQR分解はLAPACKのdgeqr(利用不可の場合はdgeqrf)を利用した. structuredQR分解の部分は、手動でブロック化を施した実装を採用した(詳細は文献[21]に委ねる).なお,structuredQR分解の部分はスレッド並列化は行われていない.また、三角行列の通信は、n×nの二次元配列のままで行う実装とした.
- S-CholQR3: グラム行列の計算は、BLASのdgemmまたは dsyrkを使う2種類の実装を用意した.ただし、 グラム行列の計算の際の通信(MPI_Allreduce)は、上記の2種類のルーチンに関わらず、n×nの二次元配列として行う実装とした.また、三角行列同士の積を計算する部分は、片方の三角行列をゼロ埋めして、BLASのdtrmmを用いた.アルゴリズム中で用いるシフト量は、記事[11]の場合と同じものを採用した(||A||_Fに基づいたシフト量).

4.2 性能評価環境・設定

今回の性能評価は, **表 3** に挙げた, 4 種類のスーパーコン ピュータシステムを用いて実施した. 各システムの諸元や 性能評価時の設定は表 3 に記載の通りである. 基本的に, コンパイルオプションや実行時の設定は, 各システムのマ ニュアル等で推奨されているものを用いた. なお, OFP と BDEC に関しては, 東京大学情報基盤センターの講習会資 料 [22], [23] を参考にした.

テスト行列の生成方法は、記事 [11] と同じで、ランダム に生成した直交行列を用いる手法を用いた*⁵. 行列サイズ は、 $m = 16777216(= 2^{24})$ として、n = 16,64,256の3ケー スで実験を行った. 各アルゴリズムは, 同一の条件で5回 実行時間を測定(ただし, 同一のジョブ内)し, 最小値を評 価対象とした. なお, HQR と S-CholQR3 に関しては, 候 補となるブロック幅や BLAS ルーチンを全て試して, その 中の最小値を評価対象とした.

今回の評価では、行列サイズを固定し、ノード数 を変えて計算時間を測定した(強スケーリング). 評価で使用したノード数は、OFP と BDEC では、 8,16,32,64,128,256,512,1024,2048 である.また、OBCX と Grand では、8,16,32,64,128,256 である.なお、表3に 記載の通り、各システムでノード当たりのプロセス配置数 が異なる.

4.3 評価結果:実行時間(強スケーリング)

各システムにおける各アルゴリズムの実行時間を図1に 示す.なお,図1の各グラフの横軸はノード数(プロセス 数ではない)で,全てのグラフの縦軸・横軸のスケールは 同じである.

まず,各アルゴリズムの実行時間に関して,図1より観 察できることを以下に挙げる.

- OFP: n = 16の場合、ノード数に関わらず、S-CholQR3 が最速である. n = 64の場合、256ノードまでは、 S-CholQR3とTSQRが同程度で最速(もしくはTSQR が若干高速)で、512ノード以降はS-CholQR3が高 速である. n = 256の場合、64ノードまでは同様に S-CholQR3とTSQRが同程度、それより多いノード数 ではS-CholQR3が高速である。HQRとCGS2は、最 速なアルゴリズムと比べて、nやノード数が関わらず、 概ね一桁以上実行時間が長い。
- BDEC: n = 16の場合, 128ノードまでは HQR と CGS2, それ以降は S-CholQR3 が最速である. n = 64の場合, 128ノードまでは HQR,それ以降は S-CholQR3 が最 速である. n = 256の場合,S-CholQR3 が最速である が,2048ノードでは HQR と大差ない.TSQR が遅く, 特に, n = 16,64の場合に顕著である.
- OBCX:ほぼ全ての条件(nおよびノード数)で S-CholQR3 が最速で,他のアルゴリズムと有意な差がある.ただし,n=64でノード数が64以下の場合においては,TSQRとあまり差がない.
- Grand: 概ね, OBCX と同じ傾向である.

次に,スケーラビリティ(ノード数を増やした際の速度 向上)に関して,図1より観察できることを以下に挙げる.

 OFP: n = 16 の場合, HQR と CGS2 は 128 もしくは 256 ノードの時点で速度向上が限界となっている. 一 方, TSQR と S-CholQR3 は 512 もしくは 1024 ノード まで速度向上が得られている. n = 64 の場合, 256 ノー ド以降で, TSQR と S-CholQR3 の速度向上が異なるこ とが確認できる. n = 256 の場合, 同様に, 64 ノード

^{*&}lt;sup>5</sup> $\kappa_2(A) = 10^{14}$ としたが、今回の性能評価の対象となるアルゴリズ ムの計算時間は、 $\kappa_2(A)$ に依存しないので、特に意味はない.

情報処理学会研究報告

IPSJ SIG Technical Report

		の可発展システムの相互に日		
本稿での呼称	OFP	BDEC	OBCX	Grand
システム名	Oakforest-PACS	Wisteria/BDEC-01	Oakbridge-CX	Grand Chariot
		(Odyssey)		
運用組織	JCAHPC	東京大学	東京大学	北海道大学
		情報基盤センター	情報基盤センター	情報基盤センター
総ノード数	8,208	7,680	1,368	1,004
CPU	Intel Xeon Phi 7250	Fujitsu A64FX	Intel Xeon Platinum 8280	Intel Xeon Gold 6148
	(KNL)		(Cascade Lake)	(Skylake)
周波数	1.4 GHz	2.2 GHz	2.7 GHz	2.4 GHz
コア数	68	48	28	20
		(アシスタントコア2or4)		
CPU 数 / ノード	1	1	2	2
メモリ容量 / ノード	96 GiB	32 GiB	128 GiB	384 GiB
	(MCDRAM: 16 GiB)			
理論演算性能 / ノード	3.046 TFLOPS	3.379 TFLOPS	4.838 TFLOPS	3.072 TFLOPS
インターコネクト	Intel Omni-Path	Tofu インターコネクト D	Intel Omni-Path	Intel Omni-Path
				(2 ポート / ノード)
ネットワークトポロジー	Full-bisection Fat Tree	6 次元メッシュ / トーラス	Full-bisection Fat Tree	Full-bisection Fat Tree
コンパイラ	Intel mpiifort	Fujitsu mpifrtpx	Intel mpiifort	Intel mpiifort
	(ver. 19.0.5.281)	(ver. 4.7.0)	(ver. 19.1.3.304)	(ver. 19.1.3.304)
BLAS/LAPACK	Intel MKL	Fujitsu BLAS/LAPACK	Intel MKL	Intel MKL
	(ver. 2019.0.5)	(ver. 1.2.34)	(ver. 2020.0.4)	(ver. 2020.0.4)
	-mkl=parallel	-SSL2BLAMP	-mkl=parallel	-mkl=parallel
コンパイルオプション	-03-ipo-qopenmp	-Kfast -Kopenmp	-03-qopenmp	-03 -qopenmp
	-align array64byte		-axCORE-AVX512	-xCORE-AVX512
	-xMIC-AVX512			
MPI プロセス数 / ノード	1	4	2	2
スレッド数 / プロセス	64	12	28	20
	(コア0と1を除く)			
補足事項	MCDRAM のみ使用	libomp を使用		
	(Flat モード)	(デフォルト設定のまま)		

表3 性能評価で用いる計算機システムの諸元と性能評価における設定

以降で, TSQR と S-CholQR3 の速度向上の差が確認で きる.

- BDEC: n = 16 の場合, HQR と CGS2 は 128 ノード以降で速度向上が停滞しているが, TSQR と S-CholQR3 は速度向上が続いている. n = 64 の場合も, 同様に, 256 ノード以降で, HQR, CGS2 と TSQR, S-CholQR3 の間で, 速度向上の差を確認できる. n = 256 の場合, 256 ノードで TSQR の速度向上が止まっている. HQR と CGS2 については, 512 もしくは 1024 ノードで停滞 している. 一方, S-CholQR3 は, 512 ノード以降, 速 度向上が負(実行時間が増加)となっている.
- OBCX: n = 16の CGS2 を除いて、どのアルゴリズム
 も、概ね、似たような速度向上が確認できる。特に、
 n = 256の場合は、4 種類のアルゴリズムの速度向上
 (グラフの傾き)がほぼ同じである。
- Grand: 概ね, OBCX と同じ傾向である.

最後に,上述の観察内容を踏まえて,図1の結果で特に 興味深い点を挙げる.

- BDEC の結果は、他の3システムと傾向が異なる.具体的には、TSQR が遅い、HSQR と CGS2 が速い、ノード数が増加した際に S-CholQR3 の実行時間が増加する、という点である.また、n = 16,64 と n = 256 で、S-CholQR3 と HQR(と CGS2) との実行時間の差が大きく異なる、という点も興味深い.
- OBCX および Grand において, HQR と CGS2 の優劣が n によって異なる. n = 16 では CGS2 が高速, n = 64 では同程度, n = 256 では HQR が高速, となっている.

4.4 評価結果:実行時間の内訳

前節で示した結果を分析するために,各アルゴリズムの 実行時間の内訳を調査する.図2に256ノード使用時の 各アルゴリズムの実行時間の内訳を示す.また,OFPと IPSJ SIG Technical Report

図1 各計算機システムにおける,各アルゴリズムの実行時間(強スケーリング):m = 16777216.

BDEC については、2048 ノード使用時の内訳を**図 3** に示 す. これらのグラフで、"comm." は通信時間(MPI 関数の 実行時間)、"st-qr" は TSQR 内の structured QR 分解の実行 時間、"other" は全体の実行時間から comm. と st-qr を引い た時間(主に演算時間に相当)、である. なお、通信時間 の測定では、MPI 関数ごとにはバリア同期を設定しておら ず,示しているグラフの値はランク0で測定した値である. また,図2および図3のグラフの縦軸のスケールは統一さ れていないので,注意されたい.

まず,256ノードの結果(図2)に関する考察を述べる.

全体的に演算(other)の部分が多いので、256ノードの時点では十分なスケーラビリティが得られているの

は自然な結果である.

- 通信回避型と非通信回避型で、通信時間に有意な差が あることが確認できる。
- S-CholQR3(あるいはTSQR)が高速なのは, 演算時 間と通信時間の両方が少ないことが理由である.
- BDEC では、n = 16,64の場合に、S-CholQR3 と HQR、 CGS2 の演算時間が同程度で、他の3システムと傾向 が異なる。
- 論文[17]の指摘の通り、n = 256の場合、TSQRのst-qrのコストを無視できなくなっている.また、BDECにおいて特に顕著であるが、これは論文[21]におけるstructured QR分解の実装の検討で、A64FXを対象としていなかったことが一因であると考えられる(今回の実装が必ずしも適当とは言えない).
- BDEC の *n* = 16,64 の場合に, TSQR の演算時間が大 きく,他の3システムと異なる傾向である.これは, 他の3システムでは LAPACK の dgeqr 関数を利用し ているが, BDEC では dgeqrf を使っており,縦長行列 の QR 分解のスレッド並列計算において,前者の方が 効率がよい場合が多いことが一因であると思われる.
- OBCX および Grand で, HQR と CGS2 の演算時間と 通信時間の比率が n によって異なっており,これが, 前節の最後で挙げた挙動の原因である.演算時間につ いては, HQR がブロック化を採用しているのに対し て, CGS2 がブロック化を採用していないので, n が大 きくなって, Level-3 BLAS の効率が上がったことで, HQR の演算時間が相対的に少なくなったと思われる. 一方,通信時間に関しては,現状,理由は不明である. 次に, 2048 ノード時の結果(図 3)に関する考察を述

べる.

- 256ノードの結果と比べると、通信時間の割合が増加 しており、スケーラビリティが停滞しているのは自然 な結果である。
- BDEC の n = 256 の場合で、S-CholQR3 の実行時間の ほぼ全てが通信時間となっている.そのため、ノード 数の増加とともに、通信時間のみが増加して、その 結果として、全体の実行時間も増加したと思われる.
 n = 16,64 の場合と比べて、演算時間の割合が極端に 小さい原因は、現状、不明である.

5. おわりに

本稿では、縦長行列の QR 分解に対して、4 種類の異な るアルゴリズムの実行時間(強スケーリング)を、4 つの スーパーコンピュータシステム上で評価した結果を報告し た.アルゴリズムが通信回避型かどうかで、スケーラビリ ティ(ノード数の増加による速度向上)の挙動が異なり、 さらに、演算部分の特徴(例:Level-3 BLAS の利用効率) の影響も加味されて、アルゴリズムの実行時間の差が生じ ている.今回の評価の範囲内では、概ね、この両者で優れた特徴を持つ S-CholQR3 の有効性が目立った.また、よく 似た構成のシステム(OBCX と Grand)では同じような傾向が確認された一方で、大きく特徴が異なる BDEC では、 他のシステムと異なる傾向が多数確認された.

今後の課題・展望としては、まず、MPI 関数や BLAS/LAPACKのベンチマーク結果と関連させて、今回の 結果の分析を深めることが挙げられる.さらに、その先の 展望として、各アルゴリズムの性能モデル・性能予測に関 する研究も考えられる.また、今回の評価では、行列の行 数(m)は固定していたので、これを変化させて実験を行 うことも必要である.加えて.最近は、低精度演算の活用 が注目されているので、単精度等の場合における評価も興 味深い.さらに、複素行列のQR分解に対する評価も行う 価値がある.その他として、プロセス数やスレッド数の設 定も実行時間に影響を与えることが多々あるので、その調 査も有益であると思われる.

謝辞 本研究は JSPS 科研費(課題番号: JP21K11909) の助成を受けたものです.また,学際大規模情報基盤共同 利用・共同研究拠点,および,革新的ハイパフォーマンス・ コンピューティング・インフラの支援を受けています(課 題番号: jh210044-NAH).

参考文献

- [1] Åke Björck: *Numerical Methods for Least Squares Problems*, SIAM (1996).
- [2] Golub, G. and Van Loan, C.: *Matrix Computations*, Johns Hopkins University Press, 4th edition (2013).
- [3] 櫻井鉄也,松尾宇泰,片桐孝洋:数値線形代数の数理と HPC,共立出版 (2018).
- [4] 中村祥大,廣田悠輔:分散メモリ型並列計算機における TSQR アルゴリズムを用いた帯行列化アルゴリズムの性 能分析,情報処理学会研究報告:ハイパフォーマンスコン ピューティング(HPC), Vol. 2022-HPC-183, No. 23, pp. 1–9 (2022).
- [5] 杉原正顯,室田一雄:線形計算の数理,岩波書店 (2009).
- [6] Ballard, G., Demmel, J., Holtz, O. and Schwartz, O.: Minimizing Communication in Numerical Linear Algebra, *SIAM Journal on Matrix Analysis and Applications*, Vol. 32, No. 3, pp. 866–901 (2011).
- [7] Demmel, J., Grigori, L., Hoemmen, M. and Langou, J.: Communication-optimal Parallel and Sequential QR and LU Factorizations, *SIAM Journal on Scientific Computing*, Vol. 34, No. 1, pp. A206–A239 (2012).
- [8] Fukaya, T., Nakatsukasa, Y., Yanagisawa, Y. and Yamamoto, Y.: CholeskyQR2: A Simple and Communication-Avoiding Algorithm for Computing a Tall-Skinny QR Factorization on a Large-Scale Parallel System, *Proceedings of the 5th Work-shop on Latest Advances in Scalable Algorithms for Large-Scale Systems*, ScalA '14, pp. 31–38 (2014).
- [9] Yamamoto, Y., Nakatsukasa, Y., Yanagisawa, Y. and Fukaya, T.: Roundoff Error Analysis of the CholeskyQR2 Algorithm, *Electronic Transactions on Numerical Analysis*, Vol. 44, pp. 306–326 (2015).
- [10] Fukaya, T., Kannan, R., Nakatsukasa, Y., Yamamoto, Y. and Yanagisawa, Y.: Shifted Cholesky QR for Computing the QR

IPSJ SIG Technical Report

図2 各アルゴリズムの実行時間の内訳(256ノード使用時): m = 16777216.

Factorization of Ill-Conditioned Matrices, *SIAM Journal on Scientific Computing*, Vol. 42, No. 1, pp. A477–A503 (2020).

- [11] 深谷 猛: 縦長行列の QR 分解に対する各種アルゴリズ ムの比較:Oakforest-PACS 上での性能評価,スーパーコ ンピューティングニュース, Vol. 22, No. 6,東京大学情報 基盤センター, pp. 28–39 (2000).
- [12] Trefethen, L. N. and Bau, D.: *Numerical Linear Algebra*, SIAM (1997).
- [13] Hadri, B., Ltaief, H., Agullo, E. and Dongarra, J.: Tile QR Factorization with Parallel Panel Processing for Multicore

Architectures, 2010 IEEE International Symposium on Parallel Distributed Processing (IPDPS), pp. 1–10 (2010).

- [14] Leon, S. J., Björck, r. and Gander, W.: Gram-Schmidt orthogonalization: 100 years and more, *Numerical Linear Algebra with Applications*, Vol. 20, No. 3, pp. 492–532 (2013).
- [15] Yamazaki, I., Tomov, S. and Dongarra, J.: Mixed-Precision Cholesky QR Factorization and Its Case Studies on Multicore CPU with Multiple GPUs, *SIAM Journal on Scientific Computing*, Vol. 37, No. 3, pp. C307–C330 (2015).
- [16] Terao, T., Ozaki, K. and Ogita, T.: LU-Cholesky QR Al-

IPSJ SIG Technical Report

gorithms for thin QR Decomposition, *Parallel Computing*, Vol. 92, p. 102571 (2020).

- [17] Fukaya, T., Imamura, T. and Yamamoto, Y.: Performance Analysis of the Householder-Type Parallel Tall-Skinny QR Factorizations Toward Automatic Algorithm Selection, *High Performance Computing for Computational Science – VEC-PAR 2014*, Lecture Notes in Computer Science, pp. 269–283 (2015).
- [18] Schreiber, R. and Van Loan, C.: A Storage-Efficient WY Representation for Products of Householder Transformations, *SIAM Journal on Scientific and Statistical Computing*, Vol. 10, No. 1, pp. 53–57 (1989).
- [19] Carson, E., Lund, K., Rozložník, M. and Thomas, S.: Block Gram-Schmidt Algorithms and their Stability Properties, *Linear Algebra and its Applications*, Vol. 638, pp. 150–195 (2022).
- [20] Mori, D., Yamamoto, Y. and Zhang, S.-L.: Backward Error Analysis of the AllReduce Algorithm for Householder QR Decomposition, *Japan Journal of Industrial and Applied Mathematics*, Vol. 29, No. 1, pp. 111–130 (2012).
- [21] Fukaya, T.: An Investigation into the Impact of the Structured QR Kernel on the Overall Performance of the TSQR Algorithm, *Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region*, HPC Asia 2019, pp. 81–90 (2019).
- [22] 東京大学情報基盤センター:講習会資料「KNL 実践」, https://www.cc.u-tokyo.ac.jp/events/lectures/ 112/20190213-2.pdf.
- [23] 東京大学情報基盤センター:講習会資料「Wisteria 実践」, https://www.cc.u-tokyo.ac.jp/events/lectures/161/20210909-1.pdf.